Jump to ContentJump to Main Navigation
Show Summary Details

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR increased in 2015: 0.726
5-year IMPACT FACTOR: 0.898

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753
Impact per Publication (IPP) 2015: 0.928

Open Access
Online
ISSN
2391-5447
See all formats and pricing




Improved land cover mapping using aerial photographs and satellite images

Katalin Varga
  • Department of Ecology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
  • :
/ Szilárd Szabó
  • Department of Physical Geography and Geoinformatics, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
/ Gergely Szabó
  • Department of Physical Geography and Geoinformatics, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
/ György Dévai
  • Hydrobiology Department, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
/ Béla Tóthmérész
  • MTA-DE Biodiversity and Ecosystem Services Research Group, Debrecen, Egyetem tér 1, H-4032 Hungary
Published Online: 2014-10-28 | DOI: https://doi.org/10.1515/geo-2015-0002

Abstract

Manual Land Cover Mapping using aerial photographs provides sufficient level of resolution for detailed vegetation or land cover maps. However, in some cases it is not possible to achieve the desired information over large areas, for example from historical data where the quality and amount of available images is definitely lower than from modern data. The use of automated and semiautomated methods offers the means to identify the vegetation cover using remotely sensed data. In this paper automated methods were tested on aerial photographs and satellite images to extract better and more reliable information about vegetation cover. These testswere performed by using automated analysis of LANDSAT7 images (with and without the surface model of the Shuttle Radar Topography Mission (SRTM)) and two temporally similar aerial photographs. The spectral bands were analyzed with supervised (maximum likelihood) methods. In conclusion, the SRTM and the combination of two temporally similar aerial photographs from earlier years were useful in separating the vegetation cover on a floodplain area. In addition the different date of the vegetation season also gave reliable information about the land cover. High quality information about old and present vegetation on a large area is an essential prerequisites ensuring the conservation of ecosystems

Keywords : LANDSAT; vegetation season; vegetation type; maximum likelihood; mapping accuracy; SRTM

References

  • [1] Mahmoud A., Elbialy S., Pradhan B. and Buchroithner M., Fieldbased landcover classification using TerraSAR-X texture analysis. (2011), Advances in Space Research 48(5), 799-805 [Crossref]

  • [2] Srivastava P.K., Han D., Rico-Ramirez M.A., Bray M. and Islam T., Selection of classification techniques for land use/land cover change investigation. (2012), Advances in Space Research 50(9), 1250-1265 [Crossref]

  • [3] Jebur M.N., Mohd Shafri H.Z., Pradhan B. and Tehrany M.S., Perpixel and object-oriented classification methods for mapping urban land cover extraction using SPOT 5 imagery. (2013), Geocarto International 1-15

  • [4] Singh S., Srivastava P., Gupta M., Thakur J. and Mukherjee S., Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. (2014), Environ Earth Sci 71(5), 2245-2255 [Crossref]

  • [5] Negrón-Juárez R.I., Chambers J.Q., Marra D.M., Ribeiro G.H.P.M., Rifai S.W., Higuchi N. and Roberts D., Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests. (2011), Remote Sens Environ 115(12), 3322-3328 [Crossref]

  • [6] Ashraf S., Brabyn L. and Hicks B.J., Image data fusion for the remote sensing of freshwater environments. (2012), Appl Geogr 32(2), 619-628 [Crossref]

  • [7] Wu C., Niu Z. and Gao S., The potential of the satellite derived green chlorophyll index for estimating midday light use eflciency in maize, coniferous forest and grassland. (2012), Ecol Indic 14(1), 66-73 [Crossref]

  • [8] Tóth J., Varga K., Végvári Z. and Varga Z., Distribution of the Eastern knapweed fritillary (Melitaea ornata, Christoph, 1893) (Lepidoptera: Nymphalidae): past, present and future. (2012), Journal of Insect Conservation 17(2), 245-255

  • [9] Burian L. and Minár J., Utilization of a comparison of curvatures for land surface segmentation. (2013), Central European Journal of Geosciences 5(4), 560-569

  • [10] Miettinen J., Shi C.H., Tan W.J. and Liew S.C., 2010 land cover map of insular Southeast Asia in 250-m spatial resolution. (2012), Remote Sens Lett 3(1), 11-20

  • [11] Gao Z., Gao W., Cao X. and Chen M., The simulation of land surface process withMODIS data in Haihe basin, China. (2012), pp. 85130Q-85130Q-85139

  • [12] MückeW., Deák B., Schroiff A., Hollaus M. and Pfeifer N., Detection of fallen trees in forested areas using small footprint airborne laser scanning data. (2013), Can J Remote Sens 39(s1), S32-S40

  • [13] Egbert S.L., Park S., Price K.P., Lee R.-Y., Wu J. and Duane Nellis M., Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. (2002), Comput Electron Agr 37(1-3), 141-156 [Crossref]

  • [14] Wulder A.A., Skakun R.S., Kurz W.A. and White J.C., Estimating time since forest harvest using segmented Landsat ETM+ imagery. (2004), Remote Sens Environ 93(1-2), 179-187 [Crossref]

  • [15] He C., Zhang Q., Li Y., Li X. and Shi P., Zoning grassland protection area using remote sensing and cellular automata modeling-A case study in Xilingol steppe grassland in northern China. (2005), J Arid Environ 63(4), 814-826 [Crossref]

  • [16] Singh S., Singh C. and Mukherjee S., Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. (2010), Central European Journal of Geosciences 2(2), 124-131

  • [17] Research C.o.G.C. and Council N.R., Global Environmental Change:Research Pathways for the Next Decade. The National Academies Press (1999)

  • [18] Lambin E.F., Turner B.L., Geist H.J., Agbola S.B., Angelsen A., Bruce J.W., Coomes O.T., Dirzo R., Fischer G., Folke C., George P.S., Homewood K., Imbernon J., Leemans R., Li X., Moran E.F., Mortimore M., Ramakrishnan P.S., Richards J.F., Skånes H., SteffenW., Stone G.D., Svedin U., Veldkamp T.A., Vogel C. and Xu J., The causes of land-use and land-cover change: moving beyond the myths. (2001), Global Environmental Change 11(4), 261-269

  • [19] Jawak S.D. and Luis A.J., Improved land cover mapping using high resolutionmultiangle 8-band WorldView-2 satellite remote sensing data. (2013), J Appl Remote Sens 7(1), 073573-073573 [Crossref]

  • [20] Moran E.F., Brondizio E., Mausel P. and Wu Y., Integrating Amazonian Vegetation, Land-Use, and Satellite Data. (1994), Bioscience 44(5), 329-338 [Crossref]

  • [21] Rocchini D., Perry G.L.W., Salerno M., Maccherini S. and Chiarucci A., Landscape change and the dynamics of open formations in a natural reserve. (2006), Landscape Urban Plan 77(1-2), 167-177 [Crossref]

  • [22] le Polain de Waroux Y. and Lambin E.F., Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). (2012), Appl Geogr 32(2), 777-786 [Crossref]

  • [23] Alados C.L., Pueyo Y., Barrantes O., Escos J., Giner L. and Robles A.B., Variations in landscape patterns and vegetation cover between 1957 and 1994 in a semiarid Mediterranean ecosystem. (2004), Landscape Ecol 19(5), 543-559

  • [24] Terzioglu S., Baskent E.Z. and Kadiogullari A.I., Monitoring forest structure at landscape level: a case study of Scots pine forest in NE Turkey. (2009), Environ Monit Assess 152(1-4), 71-81 [Crossref]

  • [25] Minick G.R. and Shain W.A., Comparison of satellite imagery and conventional aerial photography in evaulating a large forest fire. LARS Symposia, The Laboratory for Applications of Remote Sensing (LARS). The Laboratory for Applications of Remote Sensing (LARS) Purdue University (1981)

  • [26] Mosbech A. and Hansen B.U., Comparison of satellite imagery and infrared aerial photography as vegetation mapping methods in an arctic study area; Jameson Land, East Greenland. (1994), Polar Research 13(1), 139-152 [Crossref]

  • [27] Palandro D., Andréfouët S., Dustan P. and Muller-Karger F.E., Change detection in coral reef communities using Ikonos satellite sensor imagery and historic aerial photographs. (2003), Int J Remote Sens 24(4), 873-878 [Crossref]

  • [28] Tehrany M.S., Pradhan B. and Jebu M.N., A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. (2013), Geocarto International 1-19

  • [29] Ganguly S., Friedl M.A., Tan B., Zhang X. and Verma M., Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. (2010), Remote Sens Environ 114(8), 1805-1816 [Crossref]

  • [30] Mi J., Wang K. and Wang H.M., Application of Landsat ETM plus in Monitoring of Desertification in Agro-Pastoral Ecotone of Northern China. (2011), Spectrosc Spect Anal 31(3), 798-802

  • [31] Gorokhovich Y. and Voustianiouk A., Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. (2006), Remote Sens Environ 104(4), 409-415 [Crossref]

  • [32] Bolch T., Kamp U. and Olsenholler J., Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas. In New Strategies for European Remote Sensing. Millpress, Rotterdam (2005), pp. 119-127

  • [33] Siart C., Bubenzer O. and Eitel B., Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: A multicomponent case study on Mediterranean karst in Central Crete. (2009), Geomorphology 112(1-2), 106-121 [Crossref]

  • [34] Kellndorfer J., Walker W., Pierce L., Dobson C., Fites J.A., Hunsaker C., Vona J. and Clutter M., Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets. (2004), Remote Sens Environ 93(3), 339-358 [Crossref]

  • [35] Hofton M.A., Dubayah R.O., Blair J.B. and Rabine D., Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint lidar. (2006), 72(3), 279-285

  • [36] Higgins M.A., Asner G.P., Perez E., Elespuru N., Tuomisto H., Ruokolainen K. and Alonso A., Use of Landsat and SRTM Data to Detect Broad-Scale Biodiversity Patterns in Northwestern Amazonia. (2012), Remote Sensing 4(8), 2401-2418

  • [37] van Zyl J.J., The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. (2001), Acta Astronautica 48(5-12), 559-565 [Crossref]

  • [38] Walker W.S., Kellndorfer J.M. and Pierce L.E., Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height. (2007), Remote Sens Environ 106(4), 428-448 [Crossref]

  • [39] Biro K., Pradhan B., Sulieman H. and Buchroithner M., Exploitation of TerraSAR-X Data for Land use/Land Cover Analysis Using Object-Oriented Classification Approach in the African Sahel Area, Sudan. (2013), J Indian Soc Remote 41(3), 539-553 [Crossref]

  • [40] Rodríguez E., Morris C. and Morris C., A Global Assessment of the SRTM Performance. . (2006), Photogramm Eng Rem S 72(3), 249-260 [Crossref]

  • [41] Hancock G.R., Martinez C., Evans K.G. and Moliere D.R., A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology: Australian examples. (2006), Earth Surf Proc Land 31(11), 1394-1412 [Crossref]

  • [42] Harvey K.R. and Hill G.J.E., Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT satellite imagery. (2001), Int J Remote Sens 22(15), 2911-2925 [Crossref]

  • [43] Cakir G., Sivrikaya F., Terzioglu S., Keles S. and Baskent E.Z., Monitoring thirty years of land cover change: Secondary forest succession in the Artvin Forest Planning Unit of Northeastern Turkey. (2007), Scot Geogr J 123(3), 209-226 [Crossref]

  • [44] Waser L.T., Klonus, S., Ehlers, M., Khler, M., Jung, A., Potential of digital sensors for land cover and tree species classifications - a case study in the framework of the DGPF-project. (2010), Photogrammetrie - Fernerkundung - Geoinformation 2(141-156.

  • [45] Waser L.T., Ginzler, C., Kuechler, M., Baltsavias, E., Hurni, L., Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from Airborne Digital Sensor (ADS40) and RC30 data. . (2011), Remote Sens Environ 115(76-85 [Crossref]

  • [46] Wulder M.A., White, J.C., Coggins, S., Ortlepp, S.M., Coops, N.C., Heath, J., Mora, B., Digital high spatial resolution aerial imagery to support forest health monitoring: the mountain pin beetle context. (2012), J Appl Remote Sens 6(1), 10

  • [47] Schott J.R., Remote sensing. Oxford University Press, Oxford (2007)

  • [48] Anders N.S., Seijmonsbergen A.C. and Bouten W., Segmentation optimization and stratified object-based analysis for semiautomated geomorphological mapping. (2011), Remote Sens Environ 115(12), 2976-2985 [Crossref]

  • [49] Rodriguez E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer, S. Hensley, An assessment of the SRTM topographic products. Technical Report JPL D-31639. Jet Propulsion Laboratory, Pasadena, California, 143 pp. (2005)

  • [50] Fekete G., Molnár Z. and Horváth F., A magyarországi élőhelyek leírása, határozója és a Nemzeti Élőhely-osztályozási Rendszer. (Description of habitats in Hungary and the National Habitat- Classification System.). Magyar Természettudományi Múzeum, Budapest (1997)

  • [51] Strahler A.H., The use of prior probabilities in maximum likelihood classification of remotely sensed data. (1980), Remote Sens Environ 10(2), 135-163 [Crossref]

  • [52] Abou El-Magd I. and Tanton T.W., Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stagemaximumlikelihood classification. (2003), Int J Remote Sens 24(21), 4197-4206 [Crossref]

  • [53] Campbell J.B., Introduction to Remote Sensing. CRC Press, New York (2002)

  • [54] Congalton R.G., A review of assessing the accuracy of classifications of remotely sensed data. (1991), Remote Sens Environ 37(1), 35-46 [Crossref]

  • [55] Yang L., Stehman S.V., Smith J.H. and Wickham J.D., Thematic accuracy of MRLC land cover for the eastern United States. (2001), Remote Sens Environ 76(3), 418-422 [Crossref]

  • [56] Stehman S.V., Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing. (2009), Remote Sens Environ 113(11), 2455-2462 [Crossref]

  • [57] Lunetta R.S., Congalton R., Fenstermaker L.K., Jensen J., McGwire K.C. and Tinney L.R., Remote-sensing and geographic information-system data integration - error sources and research issues. (1991), Photogramm Eng Rem S 57(6), 677-687

  • [58] Lowe D., Distinctive Image Features from Scale-Invariant Keypoints. (2004), International Journal of Computer Vision 60(2), 91-110 [Crossref]

  • [59] Van Vliet J., Bregt A.K. and Hagen-Zanker A., Revisiting Kappa to account for change in the accuracy assessment of land-use change models. (2011), Ecol Model 222(8), 1367-1375 [Crossref]

  • [60] Ji C.Y., land-use classification of remotely sensed data using from Kohonen self-organizing feature map neural networks. (2000), Photogramm Eng Rem S 66(12), 1451-1460

  • [61] Kokalj Ž. and Oštir K., Land cover mapping using Landsat satellite image classification in the classical karst - Kras Region. (2007), Acta Carsologica 36(3), 433-440

  • [62] Ramsey R.D., Wright D.L. and McGinty C., Evaluating the Use of Landsat 30m Enhanced ThematicMapper to Monitor Vegetation Cover in Shrub-Steppe Environments. (2004), Geocarto International 19(2), 39-47 [Crossref]

  • [63] Mas J.F., Monitoring land-cover changes: A comparison of change detection techniques. (1999), Int J Remote Sens 20(1), 139-152 [Crossref]

  • [64] Foody G.M., Status of land cover classification accuracy assessment. (2002), Remote Sens Environ 80(1), 185-201 [Crossref]

  • [65] Wulder M.A., Franklin S.E., White J.C., Linke J. and Magnussen S., An accuracy assessment framework for large-area land cover classification products derived from medium-resolution satellite data. (2006), Int J Remote Sens 27(4), 663-683 [Crossref]

  • [66] Mahmud A., Setiawan I., Mansor S., Shariff A., Pradhan B. and Nuruddin A., Utilization of geoinformation tools for the development of forest fire hazardmapping system: example of Pekan fire, Malaysia. (2009), Central European Journal of Geosciences 1(4), 456-462

  • [67] Dimitrov P. and Roumenina E., Combining SPOT 5 imagery with plotwise and standwise forest data to estimate volume and biomass in mountainous coniferous site. (2013), Central European Journal of Geosciences 5(2), 208-222

  • [68] Manandhar R., Odeh I. and Ancev T., Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement. (2009), Remote Sensing 1(3), 330-344

  • [69] Pradhan B.S., Z., Landcover mapping and spectral analysis using multi-sensor satellite data: a case study in Tioman Island, Malaysia. (2009), Journal of Geomatics 3(2), 71- 78

  • [70] Srivastava P.K., Mukherjee, S., Gupta, M., Impact of urbanization on land use/land cover change using remote sensing and GIS: a case study. (2010), International Journal of Ecological Economics and Statistics 18(S10), 106-117

  • [71] Banerjee R. and Srivastava P.K., Reconstruction of contested landscape: Detecting land cover transformation hosting cultural heritage sites from Central India using remote sensing. (2013), Land Use Policy 34(0), 193-203 [Crossref]

  • [72] Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O. and Townshend J.R.G., High-Resolution Global Maps of 21st-Century Forest Cover Change. (2013), Science 342(6160), 850-853 [Crossref]

  • [73] Hyyppä J., Hyyppä H., Inkinen M., Engdahl M., Linko S. and Zhu Y.-H., Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. (2000), Forest Ecol Manag 128(1-2), 109-120 [Crossref]

  • [74] Xie Y.C., Sha Z.Y. and Yu M., Remote sensing imagery in vegetation mapping: a review. (2008), J Plant Ecol-Uk 1(1), 9-23 [Crossref]

  • [75] Paine D.P. and Kiser J.D., Aerial Photography and Image Interpretation. John Wiley & Sons, Inc., Hoboken, New Jersey (2012)

  • [76] Pohl C. and Van Genderen J.L., Review articleMultisensor image fusion in remote sensing: Concepts, methods and applications. (1998), Int J Remote Sens 19(5), 823-854 [Crossref]

  • [77] Langley S.K., Cheshire H.M. and Humes K.S., A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. (2001), J Arid Environ 49(2), 401-411 [Crossref]


Received: 2014-01-14

Accepted: 2014-06-24

Published Online: 2014-10-28


Citation Information: Open Geosciences. Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0002, October 2014

© 2015 K. Varga et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.