Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Integrated petrographic – rock mechanic borecore study from the metamorphic basement of the Pannonian Basin, Hungary

László Molnár
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Balázs Vásárhelyi
  • Corresponding author
  • Deptartment of Geotechnics and Engineering Geology, Budapest University of Technology and Economics, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tivadar M. Tóth
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Félix Schubert
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-16 | DOI: https://doi.org/10.1515/geo-2015-0004


The integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.

Keywords : fractured metamorphic reservoir; rock mechanical parameters; fault rocks; brittle deformation


  • [1] Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24, 1025– 1028 Web of ScienceCrossrefGoogle Scholar

  • [2] Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability of fault-related rocks and implications for fault-zone hydraulic structure. Journal of Structural Geology 19, 1393–1404 CrossrefGoogle Scholar

  • [3] Ben-Zion, Y., Sammis, C.G.,2003. Characterization of fault zones. Pure and Applied Geophysics, 160, 677–715 Web of ScienceGoogle Scholar

  • [4] Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P., Tóth, T., 1999. Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds.): The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, p. 215-250 Google Scholar

  • [5] M. Tóth, T., 2008. Repedezett, metamorf fluidumtárolók az Alföld aljzatában. D.Sc. Thesis (In Hungarian) Google Scholar

  • [6] Balázs, E., Cserepes-Meszéna, B., Nusszer, A., Szili-Gyémánt, P. (1986): An attempt to correlate the metamorphic formations of the Great Hungarian Plain and the Transylvanian Central Mountains (Muntii Apuseni). Acta Geologica Hungarica, 29/3-4, 317- 320 Google Scholar

  • [7] Szili-Gyémánt, P. (1986): Metamorphic formations in Tiszántúl: The Körös-Berettyó and the Álmosd Units. Acta Geologica Hungarica, 29, 305-316 Google Scholar

  • [8] M. Tóth T, Zachar J 2006. Petrology and deformation history of the metamorphic basement in the Mezősas-Furta crystalline high (SE Hungary). Acta Geol. Hung., 49/2, 165-188 CrossrefGoogle Scholar

  • [9] Albu, I., A. Pápa 1992: Application of high-resolution seismics in studying reservoir characteristics of hydrocarbon deposits in Hungary. – Geophysics, 57/8, pp. 1068–1088 CrossrefGoogle Scholar

  • [10] Lőrincz, K.D., 1996. Determination of stress-field history on the basis of multiphase tectonism identified in the seismic profiles, in the western part of the Szolnok flysch belt.Magyar Geofizika 37, 228–246 (in Hungarian with English abstract) Google Scholar

  • [11] Bérubé, D.,Jébrak, M.,1999. High precision boundary fractal analysis for shape characterization. Computers & Geosciences 25, 1059–1071 CrossrefGoogle Scholar

  • [12] Clark, C.,Mumm, A. S., Collins, A.S., 2006. A coupled micro- and macrostructural approach to the analysis of fluid induced brecciation, Curnamona Province, South Australia, Journal of Structural Geology 28, 745–761 CrossrefGoogle Scholar

  • [13] Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M., White, P., 1986. Self-similar cataclasis in the formation of fault gouge. Pure and Applied Geophysics 124, 54-77 CrossrefGoogle Scholar

  • [14] Sammis, C.G., King, G., Biegel, R., 1987. The kinematics of gouge deformation. Pure and Applied Geophysics 125, 777– 812 CrossrefGoogle Scholar

  • [15] Blenkinsop, T. G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics 136, 59– 86 CrossrefGoogle Scholar

  • [16] Storti, F., Billi, A., Salvini, F., 2003. Particle size distributions in natural carbonate fault rocks: insights for non-self similar cataclasis. Earth and Planetary Science Letters 206, 173–186 CrossrefGoogle Scholar

  • [17] Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.M., Ito, H., 2007. Grain size distribution of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology 29, 1282-1300 Web of ScienceCrossrefGoogle Scholar

  • [18] Mort, K.,Woodcock, N.H., 2008. Quantifying fault breccia geometry: Dent Fault, NW England. Journal of Structural Geology 30, 701-709 CrossrefWeb of ScienceGoogle Scholar

  • [19] Molnár, L., M. Tóth, M., Schubert, F., 2013. Geometric classification of brittle and semi-brittle tectonites in borecore-scale. In: Horváth, J. et al.(eds): Proceedings of V. Congress of Croatian and Hungarian and XVI. Congress of Hungarian Geomathematics, 49-53 Google Scholar

  • [20] Klovan, J. E., Billings, G. K., 1976. Classification of geological samples by discriminant function analysis. Bulletin of Canadian Petroleum Geology, 15, 313-330 Google Scholar

  • [21] Davis, J.C., 2002. Statistics and Data Analysis in Geology.Wiley, 638 Google Scholar

  • [22] ISRM, 2006.The complete ISRM suggested methods for rock characterization, testing and monitoring. (Eds: Ulusay, R., Hudson, J. A.) International Society for Rock Mechanics, 628 Google Scholar

  • [23] Cai, M., 2010. Practical estimates of tensile strength and Hoek– Brown strength parameter of brittle rocks. Rock Mechanics and Rock Engineering 43/2, 167-184 Web of ScienceCrossrefGoogle Scholar

  • [24] Martin, C., D., 1993. The strength of massive Lac du Bonnet granite around underground opening. Ph.D. Thesis, 278 Google Scholar

  • [25] Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock, parts I, II and III. International Journal of Rock Mechanics and Mining Sciences, 4, 395–430 Web of ScienceCrossrefGoogle Scholar

  • [26] Cai, M., Kaiser, P., K., Tasaka,Y., Maejima,T., Morioka, H., Minami, M., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41, 833–847 CrossrefGoogle Scholar

  • [27] Hucka, V., Das, B., 1974. Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences, 11, 389–392 CrossrefGoogle Scholar

  • [28] Passchier, C.W., Trouw, R. A. J., 2005. Microtectonics, Springer Google Scholar

  • [29] Hayman, N.,W., 2006. Shallowcrustal fault rocks from the Black Mountain detachments, Death Valley, CA. Journal of Structural Geology 28, 1767-1784 CrossrefGoogle Scholar

  • [30] Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow.Marine and Petroleum Geology, 17, 797-814 CrossrefGoogle Scholar

  • [31] Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K., 2007. Deformation bands in sandstone: a review. Journal of the Geological Society, 164 Web of ScienceGoogle Scholar

  • [32] Woodcock, N. H., Dickson, J. A. D., Tarasewicz, J. P. T. 2007. Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. In: Lonergan, L., Jolly, R. J. H., Rawnsley, K., Sanderson, D. J. (eds) Fractured Reservoirs. Geological Society, London, Special Publications, 270, 43-53 Google Scholar

  • [33] Storti, F., Balsamo, F., Salvini, F., 2007. Particle shape evolution in natural carbonate granular wearmaterial. Terra Nova 19, 344- 352. CrossrefWeb of ScienceGoogle Scholar

  • [34] Caine, J., S., Ronald L. Bruhn, R., L., Forster, C., B., 2010. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada, Journal of Structural Geology, 32, 1576–1589 Web of ScienceCrossrefGoogle Scholar

  • [35] Matonti, C., Lamarche, J., Guglielmi, Y., Marié, L., 2012: Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France), Journal of Structural Geology, 39, 103-121 Web of ScienceGoogle Scholar

About the article

Received: 2014-03-25

Accepted: 2014-10-13

Published Online: 2015-01-16

Citation Information: Open Geosciences, Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0004.

Export Citation

© 2015 L. Molnár et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in