Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475
IMPACT FACTOR 2016 (Central European Journal of Geosciences): 1.071

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753

Open Access
See all formats and pricing
In This Section

Integrated petrographic – rock mechanic borecore study from the metamorphic basement of the Pannonian Basin, Hungary

László Molnár
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
/ Balázs Vásárhelyi
  • Corresponding author
  • Deptartment of Geotechnics and Engineering Geology, Budapest University of Technology and Economics, Budapest, Hungary
/ Tivadar M. Tóth
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
/ Félix Schubert
  • Corresponding author
  • Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Hungary
Published Online: 2015-01-16 | DOI: https://doi.org/10.1515/geo-2015-0004


The integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.

Keywords : fractured metamorphic reservoir; rock mechanical parameters; fault rocks; brittle deformation


  • [1] Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology 24, 1025– 1028 [Web of Science] [Crossref]

  • [2] Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability of fault-related rocks and implications for fault-zone hydraulic structure. Journal of Structural Geology 19, 1393–1404 [Crossref]

  • [3] Ben-Zion, Y., Sammis, C.G.,2003. Characterization of fault zones. Pure and Applied Geophysics, 160, 677–715 [Web of Science]

  • [4] Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P., Tóth, T., 1999. Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds.): The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, p. 215-250

  • [5] M. Tóth, T., 2008. Repedezett, metamorf fluidumtárolók az Alföld aljzatában. D.Sc. Thesis (In Hungarian)

  • [6] Balázs, E., Cserepes-Meszéna, B., Nusszer, A., Szili-Gyémánt, P. (1986): An attempt to correlate the metamorphic formations of the Great Hungarian Plain and the Transylvanian Central Mountains (Muntii Apuseni). Acta Geologica Hungarica, 29/3-4, 317- 320

  • [7] Szili-Gyémánt, P. (1986): Metamorphic formations in Tiszántúl: The Körös-Berettyó and the Álmosd Units. Acta Geologica Hungarica, 29, 305-316

  • [8] M. Tóth T, Zachar J 2006. Petrology and deformation history of the metamorphic basement in the Mezősas-Furta crystalline high (SE Hungary). Acta Geol. Hung., 49/2, 165-188 [Crossref]

  • [9] Albu, I., A. Pápa 1992: Application of high-resolution seismics in studying reservoir characteristics of hydrocarbon deposits in Hungary. – Geophysics, 57/8, pp. 1068–1088 [Crossref]

  • [10] Lőrincz, K.D., 1996. Determination of stress-field history on the basis of multiphase tectonism identified in the seismic profiles, in the western part of the Szolnok flysch belt.Magyar Geofizika 37, 228–246 (in Hungarian with English abstract)

  • [11] Bérubé, D.,Jébrak, M.,1999. High precision boundary fractal analysis for shape characterization. Computers & Geosciences 25, 1059–1071 [Crossref]

  • [12] Clark, C.,Mumm, A. S., Collins, A.S., 2006. A coupled micro- and macrostructural approach to the analysis of fluid induced brecciation, Curnamona Province, South Australia, Journal of Structural Geology 28, 745–761 [Crossref]

  • [13] Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M., White, P., 1986. Self-similar cataclasis in the formation of fault gouge. Pure and Applied Geophysics 124, 54-77 [Crossref]

  • [14] Sammis, C.G., King, G., Biegel, R., 1987. The kinematics of gouge deformation. Pure and Applied Geophysics 125, 777– 812 [Crossref]

  • [15] Blenkinsop, T. G., 1991. Cataclasis and processes of particle size reduction. Pure and Applied Geophysics 136, 59– 86 [Crossref]

  • [16] Storti, F., Billi, A., Salvini, F., 2003. Particle size distributions in natural carbonate fault rocks: insights for non-self similar cataclasis. Earth and Planetary Science Letters 206, 173–186 [Crossref]

  • [17] Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.M., Ito, H., 2007. Grain size distribution of fault rocks: A comparison between experimentally and naturally deformed granitoids. Journal of Structural Geology 29, 1282-1300 [Web of Science] [Crossref]

  • [18] Mort, K.,Woodcock, N.H., 2008. Quantifying fault breccia geometry: Dent Fault, NW England. Journal of Structural Geology 30, 701-709 [Crossref] [Web of Science]

  • [19] Molnár, L., M. Tóth, M., Schubert, F., 2013. Geometric classification of brittle and semi-brittle tectonites in borecore-scale. In: Horváth, J. et al.(eds): Proceedings of V. Congress of Croatian and Hungarian and XVI. Congress of Hungarian Geomathematics, 49-53

  • [20] Klovan, J. E., Billings, G. K., 1976. Classification of geological samples by discriminant function analysis. Bulletin of Canadian Petroleum Geology, 15, 313-330

  • [21] Davis, J.C., 2002. Statistics and Data Analysis in Geology.Wiley, 638

  • [22] ISRM, 2006.The complete ISRM suggested methods for rock characterization, testing and monitoring. (Eds: Ulusay, R., Hudson, J. A.) International Society for Rock Mechanics, 628

  • [23] Cai, M., 2010. Practical estimates of tensile strength and Hoek– Brown strength parameter of brittle rocks. Rock Mechanics and Rock Engineering 43/2, 167-184 [Web of Science] [Crossref]

  • [24] Martin, C., D., 1993. The strength of massive Lac du Bonnet granite around underground opening. Ph.D. Thesis, 278

  • [25] Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock, parts I, II and III. International Journal of Rock Mechanics and Mining Sciences, 4, 395–430 [Web of Science] [Crossref]

  • [26] Cai, M., Kaiser, P., K., Tasaka,Y., Maejima,T., Morioka, H., Minami, M., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41, 833–847 [Crossref]

  • [27] Hucka, V., Das, B., 1974. Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences, 11, 389–392 [Crossref]

  • [28] Passchier, C.W., Trouw, R. A. J., 2005. Microtectonics, Springer

  • [29] Hayman, N.,W., 2006. Shallowcrustal fault rocks from the Black Mountain detachments, Death Valley, CA. Journal of Structural Geology 28, 1767-1784 [Crossref]

  • [30] Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow.Marine and Petroleum Geology, 17, 797-814 [Crossref]

  • [31] Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K., 2007. Deformation bands in sandstone: a review. Journal of the Geological Society, 164 [Web of Science]

  • [32] Woodcock, N. H., Dickson, J. A. D., Tarasewicz, J. P. T. 2007. Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. In: Lonergan, L., Jolly, R. J. H., Rawnsley, K., Sanderson, D. J. (eds) Fractured Reservoirs. Geological Society, London, Special Publications, 270, 43-53

  • [33] Storti, F., Balsamo, F., Salvini, F., 2007. Particle shape evolution in natural carbonate granular wearmaterial. Terra Nova 19, 344- 352. [Crossref] [Web of Science]

  • [34] Caine, J., S., Ronald L. Bruhn, R., L., Forster, C., B., 2010. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada, Journal of Structural Geology, 32, 1576–1589 [Web of Science] [Crossref]

  • [35] Matonti, C., Lamarche, J., Guglielmi, Y., Marié, L., 2012: Structural and petrophysical characterization of mixed conduit/seal fault zones in carbonates: Example from the Castellas fault (SE France), Journal of Structural Geology, 39, 103-121 [Web of Science]

About the article

Received: 2014-03-25

Accepted: 2014-10-13

Published Online: 2015-01-16

Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0004. Export Citation

© 2015 L. Molnár et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in