Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 16, 2015

Integrated petrographic – rock mechanic borecorestudy from the metamorphic basement of thePannonian Basin, Hungary

  • László Molnár , Balázs Vásárhelyi , Tivadar M. Tóth and Félix Schubert
From the journal Open Geosciences

Abstract

The integrated evaluation of borecores from theMezősas-Furta fractured metamorphic hydrocarbon reservoirsuggests significantly distinct microstructural androck mechanical features within the analysed fault rocksamples. The statistical evaluation of the clast geometriesrevealed the dominantly cataclastic nature of the samples.Damage zone of the fault can be characterised byan extremely brittle nature and low uniaxial compressivestrength, coupled with a predominately coarse fault brecciacomposition. In contrast, the microstructural mannerof the increasing deformation coupled with higher uniaxialcompressive strength, strain-hardening nature andlow brittleness indicate a transitional interval betweenthe weakly fragmented damage zone and strongly grindedfault core. Moreover, these attributes suggest this unit ismechanically the strongest part of the fault zone. Gougerichcataclasites mark the core zone of the fault, with theirwidespread plastic nature and locally pseudo-ductile microstructure.Strain localization tends to be strongly linkedwith the existence of fault gouge ribbons. The fault zonewith ∼15 m total thickness can be defined as a significantmigration pathway inside the fractured crystalline reservoir.Moreover, as a consequence of the distributed natureof the fault core, it may possibly have a key role in compartmentalisationof the local hydraulic system.

References

[1] Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architectureand permeability structure. Geology 24, 1025– 102810.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2Search in Google Scholar

[2] Evans, J.P., Forster, C.B., Goddard, J.V., 1997. Permeability offault-related rocks and implications for fault-zone hydraulicstructure. Journal of Structural Geology 19, 1393–140410.1016/S0191-8141(97)00057-6Search in Google Scholar

[3] Ben-Zion, Y., Sammis, C.G.,2003. Characterization of faultzones. Pure and Applied Geophysics, 160, 677–71510.1007/PL00012554Search in Google Scholar

[4] Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu,M., Szafián, P., Tóth, T., 1999. Lithospheric structure ofthe Pannonian basin derived from seismic, gravity and geothermaldata. In: Durand B, Jolivet L, Horváth F, Séranne M (eds.):The Mediterranean Basins: Tertiary Extension within the AlpineOrogen. Geological Society, London, Special Publications, 156,p. 215-25010.1144/GSL.SP.1999.156.01.12Search in Google Scholar

[5] M. Tóth, T., 2008. Repedezett, metamorf fluidumtárolók azAlföld aljzatában. D.Sc. Thesis (In Hungarian)Search in Google Scholar

[6] Balázs, E., Cserepes-Meszéna, B., Nusszer, A., Szili-Gyémánt, P.(1986): An attempt to correlate the metamorphic formations ofthe Great Hungarian Plain and the Transylvanian Central Mountains(Muntii Apuseni). Acta Geologica Hungarica, 29/3-4, 317-320Search in Google Scholar

[7] Szili-Gyémánt, P. (1986): Metamorphic formations in Tiszántúl:The Körös-Berettyó and the Álmosd Units. Acta Geologica Hungarica,29, 305-316Search in Google Scholar

[8] M. Tóth T, Zachar J 2006. Petrology and deformation historyof the metamorphic basement in the Mezősas-Furta crystallinehigh (SE Hungary). Acta Geol. Hung., 49/2, 165-18810.1556/AGeol.49.2006.2.4Search in Google Scholar

[9] Albu, I., A. Pápa 1992: Application of high-resolution seismicsin studying reservoir characteristics of hydrocarbon deposits inHungary. – Geophysics, 57/8, pp. 1068–108810.1190/1.1443319Search in Google Scholar

[10] Lőrincz, K.D., 1996. Determination of stress-field history on thebasis of multiphase tectonism identified in the seismic profiles,in the western part of the Szolnok flysch belt.Magyar Geofizika37, 228–246 (in Hungarian with English abstract)Search in Google Scholar

[11] Bérubé, D.,Jébrak, M.,1999. High precision boundary fractalanalysis for shape characterization. Computers & Geosciences25, 1059–107110.1016/S0098-3004(99)00067-9Search in Google Scholar

[12] Clark, C.,Mumm, A. S., Collins, A.S., 2006. A coupled micro- andmacrostructural approach to the analysis of fluid induced brecciation,Curnamona Province, South Australia, Journal of StructuralGeology 28, 745–76110.1016/j.jsg.2006.01.005Search in Google Scholar

[13] Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M.,White, P., 1986. Self-similar cataclasis in the formation of faultgouge. Pure and Applied Geophysics 124, 54-7710.1007/BF00875719Search in Google Scholar

[14] Sammis, C.G., King, G., Biegel, R., 1987. The kinematics ofgouge deformation. Pure and Applied Geophysics 125, 777– 81210.1007/BF00878033Search in Google Scholar

[15] Blenkinsop, T. G., 1991. Cataclasis and processes of particlesize reduction. Pure and Applied Geophysics 136, 59– 8610.1007/BF00878888Search in Google Scholar

[16] Storti, F., Billi, A., Salvini, F., 2003. Particle size distributions innatural carbonate fault rocks: insights for non-self similar cataclasis.Earth and Planetary Science Letters 206, 173–18610.1016/S0012-821X(02)01077-4Search in Google Scholar

[17] Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.M., Ito, H.,2007. Grain size distribution of fault rocks: A comparison betweenexperimentally and naturally deformed granitoids. Journalof Structural Geology 29, 1282-130010.1016/j.jsg.2007.04.003Search in Google Scholar

[18] Mort, K.,Woodcock, N.H., 2008. Quantifying fault breccia geometry:Dent Fault, NW England. Journal of Structural Geology 30,701-70910.1016/j.jsg.2008.02.005Search in Google Scholar

[19] Molnár, L., M. Tóth, M., Schubert, F., 2013. Geometric classificationof brittle and semi-brittle tectonites in borecore-scale. In:Horváth, J. et al.(eds): Proceedings of V. Congress of Croatianand Hungarian and XVI. Congress of Hungarian Geomathematics,49-5310.1007/s40328-014-0067-3Search in Google Scholar

[20] Klovan, J. E., Billings, G. K., 1976. Classification of geologicalsamples by discriminant function analysis. Bulletin of CanadianPetroleum Geology, 15, 313-330Search in Google Scholar

[21] Davis, J.C., 2002. Statistics and Data Analysis in Geology.Wiley,638Search in Google Scholar

[22] ISRM, 2006.The complete ISRM suggested methods for rockcharacterization, testing and monitoring. (Eds: Ulusay, R., Hudson,J. A.) International Society for Rock Mechanics, 628Search in Google Scholar

[23] Cai, M., 2010. Practical estimates of tensile strength and Hoek–Brown strength parameter of brittle rocks. Rock Mechanics andRock Engineering 43/2, 167-18410.1007/s00603-009-0053-1Search in Google Scholar

[24] Martin, C., D., 1993. The strength of massive Lac du Bonnetgranite around underground opening. Ph.D. Thesis, 278Search in Google Scholar

[25] Bieniawski, Z.T., 1967. Mechanism of brittle fracture of rock,parts I, II and III. International Journal of Rock Mechanics andMining Sciences, 4, 395–43010.1016/0148-9062(67)90030-7Search in Google Scholar

[26] Cai, M., Kaiser, P., K., Tasaka,Y., Maejima,T., Morioka, H., Minami,M., 2004. Generalized crack initiation and crack damagestress thresholds of brittle rock masses near underground excavations.International Journal of Rock Mechanics and MiningSciences, 41, 833–84710.1016/j.ijrmms.2004.02.001Search in Google Scholar

[27] Hucka, V., Das, B., 1974. Brittleness determination of rocks bydifferent methods. International Journal of Rock Mechanics andMining Sciences, 11, 389–39210.1016/0148-9062(74)91109-7Search in Google Scholar

[28] Passchier, C.W., Trouw, R. A. J., 2005. Microtectonics, SpringerSearch in Google Scholar

[29] Hayman, N.,W., 2006. Shallowcrustal fault rocks from the BlackMountain detachments, Death Valley, CA. Journal of Structural Geology 28, 1767-178410.1016/j.jsg.2006.06.017Search in Google Scholar

[30] Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment,migration and flow.Marine and Petroleum Geology, 17, 797-81410.1016/S0264-8172(00)00020-9Search in Google Scholar

[31] Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K., 2007. Deformationbands in sandstone: a review. Journal of the GeologicalSociety, 16410.1144/0016-76492006-036Search in Google Scholar

[32] Woodcock, N. H., Dickson, J. A. D., Tarasewicz, J. P. T. 2007.Transient permeability and reseal hardening in fault zones: evidencefrom dilation breccia textures. In: Lonergan, L., Jolly, R.J. H., Rawnsley, K., Sanderson, D. J. (eds) Fractured Reservoirs.Geological Society, London, Special Publications, 270, 43-5310.1144/GSL.SP.2007.270.01.03Search in Google Scholar

[33] Storti, F., Balsamo, F., Salvini, F., 2007. Particle shape evolutionin natural carbonate granular wearmaterial. Terra Nova 19, 344-352.10.1111/j.1365-3121.2007.00758.xSearch in Google Scholar

[34] Caine, J., S., Ronald L. Bruhn, R., L., Forster, C., B., 2010. Internalstructure, fault rocks, and inferences regarding deformation,fluid flow, and mineralization in the seismogenic Stillwaternormal fault, Dixie Valley, Nevada, Journal of Structural Geology,32, 1576–158910.1016/j.jsg.2010.03.004Search in Google Scholar

[35] Matonti, C., Lamarche, J., Guglielmi, Y., Marié, L., 2012: Structuraland petrophysical characterization of mixed conduit/sealfault zones in carbonates: Example from the Castellas fault (SEFrance), Journal of Structural Geology, 39, 103-12110.1016/j.jsg.2012.03.003Search in Google Scholar

Received: 2014-03-25
Accepted: 2014-10-13
Published Online: 2015-01-16

© 2015 L. Molnár et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/geo-2015-0004/html
Scroll to top button