[1] Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos,
A. (2012). Estimating air surface temperature in Portugal using
MODIS LST data. Remote Sensing of Environment, 124, 108-
121.
CrossrefGoogle Scholar
[2] Bristow, K.L.; Campbell, G.S. (1984). On the relationship between
incoming solar radiation and daily maximum and minimum
temperature. Agricultural and Forest Meteorology, 31,
159-166.
CrossrefGoogle Scholar
[3] Changnon, S.A.; Kunkel, K.E.; Reinke, B.C. (1996). Impairs and
responses to the 1995 heatwave: A call to action. Bull. Am. Meteorol.
Soc., 77, 1497-1506.
Google Scholar
[4] Chavez, P.S. (1988). An improved dark-object subtraction technique
for atmospheric scattering correction of multispectral
data. Remote Sensing of Environment, 24, 459-479.
CrossrefGoogle Scholar
[5] Chen, X.; Zhao, H.; Li, P.; Yin, Z. (2006). Remote sensing imagebased
analysis of the relationship between urban heat island
and land use/cover changes. Remote Sensing of Environment,
104, 133-146.
CrossrefGoogle Scholar
[6] City of Saskatoon. (2010). Neighbourhood profiles,
10th edition. Planning and Development branch.
Department of Community Services, City of Saskatoon.
(http://www.saskatoon.ca/DEPARTMENTS/
Community{%}20Services/PlanningDevelopment/FutureGrowth/DemographicAndHousingData/Pages/
NeighbourhoodProfiles.aspx (Accessed on June 15, 2013).
Google Scholar
[7] Dash, P.; Göttsche, F.-M.;Olesen, F.-S.; Fischer, H. (2002). Land
surface temperature and emissivity estimation from passive
sensor data: Theory and practice-current trends. International
Journal of Remote Sensing, 23, 2563-2594.
CrossrefGoogle Scholar
[8] Doick, K.; Hutchings, T. (2013). Air temperature regulation
by urban trees and green infrastructure. Forest research,
FCRN012, 1-10.
Google Scholar
[9] Environment Canada. (2013). National Climate Data and
Information Archive. Climate data online. (http://climate.
weatheroflce.gc.ca/climateData/canad_e.html) (Accessed on
June 2, 2013)
Google Scholar
[10] Fabrizi, R.; Bonafoni, S.; Biondi, R. (2010). Satellite and
Ground-Based Sensors for the Urban Heat Island Analysis in
the City of Rome. Remote Sens., 2, 1400-1415.
Google Scholar
[11] Hamdi, R. (2010). Estimating Urban Heat Island Effects on the
Temperature Series of Uccle (Brussels, Belgium) Using Remote
Sensing Data and a Land Surface Scheme. Remote Sens., 2,
2773-2784.
Google Scholar
[12] Hansen, J.; Johnson, D.; Laeis, A.; Lebedeff, S.; Lee, P.; Rind, D.;
Russel, G. (19891). Climatic impact of increasing atmospheric
carbon dioxide. Science, 213, 957-966.
Google Scholar
[13] Huang, L.; Li, J.; Zhao, D.; Zhu, J. (2008). A fieldwork study
on the diurnal changes of urban microclimate in four types of
ground cover and urban heat island of Nanjing, China. Building
and Environment, 43, 7-17.
Google Scholar
[14] Hung,T.; Uchihama,D.; Ochi,S.; Yasuoka,Y. (2006). Assessment
with satellite data of the urban heat island effects in
Asian mega cities. International Journal of Applied Earth Observation
and Geoinformation, 8, 34-48.
CrossrefGoogle Scholar
[15] Jacobson, M. (2000). Fundamentals of atmospheric modeling.
Cambridge University Press.
Google Scholar
[16] Jensen, J.R. (2007). Remote sensing of the environment: an
Earth resource perspective, 2nd ed.; Pearson Prentice Hall: Upper
Saddle River, NJ. USA.
Google Scholar
[17] Jin, M.; Dickinson, R. E. (2010). Land surface skin temperature
climatology: benefitting from the strengths of satellite observations.
Environmental Research Letters, 5, 44004.
CrossrefGoogle Scholar
[18] Jin, M.S.; Kessomkiat, W.; Pereira, G. (2011). Satellite-
Observed Urbanization Characters in Shanghai, China:
Aerosols, Urban Heat Island Effect, and Land–Atmosphere
Interactions. Remote Sens., 3, 83-99.
Google Scholar
[19] Jones, P.I. (1995). Land surface temperatures: is the network
good enough? Clim. Change, 31, 545-558.
Google Scholar
[20] Karl, T.R.; Derr, V.E.; Easterling, D.R.; Folland, C.K.; Hofmann,
D.J.; Levitus, S.; Nicholls, N.; Parker, D.E.; Withee, G.W. (1995).
Critical issues for long-term climate monitoring. Clim. Change,
31, 185-221.
Google Scholar
[21] Köppen, W. (1936). Das geographisca System der Klimate, In
Handbuch der Klimatologie, Köppen, W. and Geiger, R. Eds.;
Verlag von Gebrüder Borntraeger: Berlin, Germany.
Google Scholar
[22] Kustas, W.P.; Norman, J.M. (2000). Evaluating the effects of
subpixel heterogeneity on pixel average fluxes. Remote Sensing
of Environment, 74, 327-342.
CrossrefGoogle Scholar
[23] Kwarteng, A.; Small, C. (2010). Remote sensing of urban environmental
convictions. In Remote sensing of urban and suburban
areas; Rashed, T., Jürgens, C., Eds.; Springer: New York,
USA.
Google Scholar
[24] Landsat 7 science data users’ handbook. (2013). Goddard
Space Flight Center, NASA, Washington, DC.
(http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_
Handbook.pdf.) (accessed on June 1, 2013)
Google Scholar
[25] Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.;
Cosh, M.H.; Bindlish, R. (2004). Deriving land surface temperature
from Landsat 5 and 7 during SMEX02/SMACEX. Remote
Sensing of Environment, 92, 521-534.
CrossrefGoogle Scholar
[26] Li, X.; Zhou, W.; Ouyang, Z. (2013). Relationship between land
surface temperature and spatial pattern of greenspace: what
are the effects of spatial resolution? Landscape and Urban
Planning, 114, 1-8.
CrossrefGoogle Scholar
[27] Li, Y.-Y., Zhang,H., Kainz,W. (2012). Monitoring patterns of urban
heat islands of the fast-growing Shanghai metropolis,
China using time-series of Landsat TM/ETM+ data. International
Journal of Applied Earth Observation and Geoinfomation,
19, 127-138.
Google Scholar
[28] Liao, J.G.; McGee, D. (2003). Adjusted coeflcients of determination
for logistic regression. The American Statistician, 57,
161-165.
CrossrefGoogle Scholar
[29] Liu, L.; Zhang, Y. (2011). Urban Heat Island Analysis Using the
Landsat TM Data and ASTER Data: A Case Study in Hong Kong.
Remote Sens., 3, 1535-1552.
Google Scholar
[30] Madden, R.A.; Shea, D.J.; Branstator, G.W.; Tribbia, J, J.; Weber,
R.O. (1993). The effects of imperfect spatial surface temperature
derived from satellite observations with ground truth
during FIFE. International Journal of Remote Sensing, 14, 1659-
1676.
Google Scholar
[31] Mostovoy, G.V.; King, R.L.; Reddy, K.R.; Kakani, V.G.; Filippova,
M.G. (2006). Statistical estimation of daily maximum and minimum
air temperatures from MODIS LST data over the state of
Mississippi. GIScience and Remote Sensing, 43, 78-110
Google Scholar
[32] NASA (National Aeronautics and Space Administration).
(2013a). Technical information. (http://landsat.gsfc.nasa.
gov/about/technical.html) (accessed on June 2, 2013)
Google Scholar
[33] NASA (National Aeronautics and Space Administration).
(2013b) MODIS Web. (http://modis.gsfc.nasa.gov/data/)
(accessed on June 2, 2013)
Google Scholar
[34] Nicole, J.E. (1996). High-resolution surface temperature patterns
related to urban morphology in a tropical city: a satellitebased
study. Journal of Applied Meteorology, 35, 135-146.
CrossrefGoogle Scholar
[35] Peel, M.C.; Finlayson, B.L.; McMahon, T.A. (2007). Updated
worldmap of the Köppen-Geiger climate classification. Hydrol.
Earth Syst. Sci., 11, 1633-1644.
Google Scholar
[36] Prihodko, L.; Goward, S.N. (1997). Estimation of air temperature
from remotely sensed surface observations. Remote Sensing
of Environment, 60, 335-346.
CrossrefGoogle Scholar
[37] Proudfoot, S. (2011). Saskatoon the Fastest-Growing City
in Canada. (http://news.nationalpost.com/2011/07/20/
saskatoon-the-fastest-growing-city-in-canada/) (Accessed
on June 15, 2012).
Google Scholar
[38] Qin, Z.; Karnieli, A.; Berliner, P. (2001). A mono-window algorithm
for retrieving land surface temperature from Landsat TM
data and its application to the Israel–Egypt border region. International
Journal of Remote Sensing, 22, 3719-3746.
CrossrefGoogle Scholar
[39] Rinner, C.; Hussain, M. (2011). Toronto’s Urban Heat Island-
Exploring the Relationship between Land Use and Surface
Temperature. Remote Sens., 3, 1251-1265.
Google Scholar
[40] Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. (1974). Monitoring
vegetation systems in the Great Plains with ERTS, In Proc.ERTS-1 Symp., NASA SP-351, Greenbelt, MD, 1974. NASA,
Washington DC, USA.
Google Scholar
[41] Seto, K.C.; Christensen, P. (2013). Remote sensing science to
inform urban climate change mitigation strategies. Urban Climate,
3, 1-6.
Google Scholar
[42] Shen, L.; He, Y.; Guo, X. (2013a). Exploration of Loggerhead
Shrike Habitats in Grassland National Park of Canada
Based on in SituMeasurements and Satellite-Derived Adjusted
Transformed Soil-Adjusted Vegetation Index (ATSAVI). Remote
Sens., 5, 432-453.
Google Scholar
[43] Shen L.; He, Y.; Guo, X. (2013b). Suitability of the normalized
difference vegetation index and the adjusted transformed soiladjusted
vegetation index for spatially characterizing Loggerhead
Shrike habitats in North American mixed prairie. Journal
of Applied Remote Sensing, 7(073574), 1-17.
Google Scholar
[44] Shen, L.; Kyllo, J.M.; Guo, X. (2013c). A potential integrated
model based on a hierarchical multi-indices system for monitoring
and evaluating urban sustainability. Sustainability, 5,
524-559.
Google Scholar
[45] Strahler, A.; Archibold, B. (2011). Air temperature. In Physical
Geography, 5nd ed.; Burke, R., Rancourt, L., Brown, G., Fenandoe,
C., Eds.; John Wiley& Sons Ltd.: Mississauga, Canada.
Google Scholar
[46] Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.;
Guanter, L., Moreno,J., Plaza, A.; Martínez, P. (2008). Land
Surface Emissivity retrieval from different VNIR and TIR sensors.
IEEE Transactions on Geoscience and Remote Sensing,
46, 316-327.
CrossrefGoogle Scholar
[47] USGS. (2013). EarthExplorer. (http://earthexplorer.usgs.gov/)
(accessed on June 2, 2013)
Google Scholar
[48] Vogt, J.; Viau, A.A.; Paquet, F. (1997).Mapping regional air temperature
fields using satellite derived surface skin temperatures.
International Journal of Climatology, 17, 1559-1579.
CrossrefGoogle Scholar
[49] Vukovich, F.M. (1983). An analysis of the ground temperature
and reflectivity pattern about St. Louis, Missouri, using HCMM
satellite data. Journal of Applied Meteorology, 22, 560-571.
CrossrefGoogle Scholar
[50] Weng, Q.; Lu, D.; Schubring, J. (2004). Estimation of land surface
temperature-vegetation abundance relationship for urban
heat island studies. Remote Sensing of Environment, 89, 467-
483.
CrossrefGoogle Scholar
[51] Zhang, C.; Guo, X.; Wilmshurst, J.; Crump, S. (2008). Monitoring
temporal heterogeneity in a protected mixed prairie
ecosystem using 10-day NDVI composite. The Prairie Forum,
33, 145-166.
Google Scholar
[52] Zhu Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. (2012). Assessment
of spectral, polarimetric, temporal, and spatial dimensions
for urban and peri-urban land cover classification
using Landsat and SAR data. Remote Sensing of Environment,
117, 72-82.
CrossrefGoogle Scholar
Comments (0)