Jump to ContentJump to Main Navigation
Show Summary Details

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR increased in 2015: 0.726
5-year IMPACT FACTOR: 0.898

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753
Impact per Publication (IPP) 2015: 0.928

Open Access
Online
ISSN
2391-5447
See all formats and pricing




2D and 3D seismic measurements to evaluate the collapse risk of an important prehistoric cave in soft carbonate rock

Giovanni Leucci
  • Consiglio Nazionale delle Ricerche – Istituto per i Beni Archeologici e Monumentali
  • :
/ Lara De Giorgi
  • Consiglio Nazionale delle Ricerche – Istituto per i Beni Archeologici e Monumentali
Published Online: 2015-02-13 | DOI: https://doi.org/10.1515/geo-2015-0006

Abstract

The southern part of the Apulia region (the Salento peninsula) has been the site of at least fifteen collapse events due to sinkholes in the last twenty years. The majority of these occurred in "soft" carbonate rocks (calcarenites). Man–made and/or natural cavities are sometimes assets of historical and archaeological significance. This paper provides a methodology for the evaluation of sinkhole hazard in "soft" carbonate rocks, combining seismic and mine engineering methods.Acase study of a natural cavity which is called Grotta delle Veneri is illustrated. For this example the approach was: i) 2D and 3D seismic methods to study the physical-mechanical characteristics of the rock mass that constitutes the roof of the cave; and ii) scaled span empirical analysis in order to evaluate the instability of the crown pillar’s caves.

Keywords : 2D and 3D seismic method; prehistoric cave stability; carbonate rock; safety factor; probability of failure

References

  • [1] Cremonesi G., La passione per l’origine, Giliano Cremonesi e la passione preistorica nel salento, 1987, 213–245.

  • [2] Leucci G., De Giorgi L., Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance, Natural Hazards and Earth System Sciences, 5, 2005, 17-22.

  • [3] Catani F., Fanti R., Moreti S., Geomorphologic risk assessment for cultural heritage conservation, in: Allison R.J. (Ed.), Applied Geomorphology: theory and practice, John Wiley & Sons, LTD, West Sussex, England, 2002, 480.

  • [4] Sánchez M. A., Foyo A., Tomillo C., Iriarte E., Geological risk assessment of the area surrounding Altamira Cave: A proposed Natural Risk Index and Safety Factor for protection of prehistoric caves Engineering Geology 94, 2007, 180–200. [Crossref] [Web of Science]

  • [5] Veni G., A geomorphological strategy for conducting environmental impact assessments in karst areas, Geomorphology 31, 1999, 151-180. [Crossref]

  • [6] Lin Z., Hatherly P., Vozoff K., Engels O. G., Smith G. H., Joint application of seismic and electromagnetic methods to coal characterisation at west cliff colliery, New South Wales, Experiment in Geophysics 27(4), 1996, 205–215.

  • [7] Dobroka M., Gyulai A., Ormos T., Csokas J., Dresen L., 1991. Join inversion algorithm of seismic and geoelectric data recorded in an underground coal mine. Geophysical Prospecting 39(5), 1991, 643–666. [Crossref]

  • [8] Heikkinen E.J., Saksa P.J., Integrating geophysical data into bedrock model in site characterization for nuclear waste disposal. 60th Mtg. Eur. Assoc. Expl Geophys., Expanded Abstracts, vol. I. EAGE, The Netherlands, 1998, Session 4–49.

  • [9] Santarato G., Nasser A., Chiara P., Prospezioni geofisiche in area urbana, Geologia Tecnica e Ambiente 4/98, 1998, 43–52.

  • [10] Cardarelli E., Marrone C., Orlando L., Evaluation of tunnel stability using integrated geophysical methods, Journal of Applied Geophysics 52, 2003, 93–102. [Crossref]

  • [11] Leucci G., De Giorgi L., Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (marina di capilungo, lecce –italy), Exploration Geophysics 41, 2010, 178-188. [Crossref] [Web of Science]

  • [12] Crampin S., McGonigle R., Bamford D., Estimatine crack parameters from observation of P-wave velocity anisotropy, Geophysics 45, 1980, 361–375.

  • [13] Boadu F. K., Fractured rock mass characterization parameters and seismic properties: analytical studies, J. Appl. Geophys. 36, 1997, 1–19. [Crossref]

  • [14] Kahraman S., The effects of fracture roughness on P-wave velocity, Eng. Geol. 63, 2002, 347–350. [Crossref]

  • [15] Leucci G. and De Giorgi L., Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock ("Calcarenite del Salento"), Engineering Geology 84, 2006, 130–142. [Crossref]

  • [16] Hutchinson D. J., Phillips C. and Cascante G., Risk considerations for crown pillar stability assessment for mine closure planning, Geotechnical and Geological Engineering 20, 2002, 41-63.

  • [17] Barton N., Some new Q-value correlations to assist in site characterisation and tunnel design, Int. J. Rock Mech. Min. Sci. 39, 2002, 185-216. [Crossref]

  • [18] Carter T. G., A new approach to surface crown pillar design. 16th Canadian Rock Mechanics Symp., Laurentian University, Sudbury, 1992, 75-84.

  • [19] Barton N., Lien R. and Lunde J., Engineering classification of rockmasses for the design of tunnel support, Rock Mech. 6(4), 1974, 189-236. [Crossref]

  • [20] Carter T. G. and Miller R. I., Crown pillar risk assessment planning aid for cost-effective mine closure remediation, Trans. Instn. Min. Metall. 104, 1995, A41-A57.

  • [21] Leucci G., I metodi elettromagnetico impulsivo, elettrico e sismico tomografico a rifrazione per la risoluzione di problematiche ambientali: sviluppi metodologici e applicazioni, PhD tesi in Geophysics for Environmental and Territory, University of Messina, 2004.

  • [22] Sandmeier K. J., Reflexw 6.0 Manual, Sandmeier Software, Zipser Strabe 1, D-76227 Karlsruhe, Germany, 2011.

  • [23] Gilbert P., Iterative methods for three-dimensional reconstruction of an object from projections, Journal of Theoretical Biology 36, 1972, 105-117. [Crossref]

  • [24] Krajewski C., Dresen L., Gelbke C., Ruter H., Iterative tomographic methods to locate low-velocity anomalies: a model study, Geophysical Prospecting 37, 1989, 717-751. [Crossref]

  • [25] Carrozzo M. T., Leucci G., Margiotta S., Mazzone F., Negri S., Integrated geophysical and geological investigations applied to sedimentary rock mass characterization Annals of Geophysics 51(1), 2008, 191-202.

  • [26] Parasnis D. S., Principles of Applied Geophysics, fifth ed., Chapman and Hall, London, 1997.

  • [27] Hayashi K., Takahashi T., High resolution seismic refraction method using surface and borehole data for site characterization of rocks, International Journal of Rock Mechanics and Mining Sciences 38, 2001, 807-813. [Crossref]

  • [28] Morey D., Schuster G. T., Paleoseismicity of the Oquirrh fault, Utah from shallow seismic tomography, Geophysical Journal International 138, 1999, 25-35. [Crossref]

  • [29] Nemeth T., Normark E., Qin F., Dynamic smoothing in cross-well traveltime tomography, Geophysics 62, 1997, 168-176. [Crossref]

  • [30] Leucci G., Greco F., De Giorgi L., Mauceri R., Three-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiolà (Sicily, Italy), Journal of Archaeological Science 34, 2007, 233-242. [Web of Science] [Crossref]


Received: 2014-05-29

Accepted: 2014-06-23

Published Online: 2015-02-13


Citation Information: Open Geosciences. Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0006, February 2015

© 2015 Giovanni Leucci, Lara De Giorgi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.