Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Observing the past to better understand the future: a synthesis of the Neogene climate in Europe and its perspectives on present climate change

Gonçalo A. Prista
  • Centro de Geologia da Universidade de Lisboa, Campo Grande, Edifício C6, 1749-016 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rui J. Agostinho
  • Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mário A. Cachão
  • Centro de Geologia da Universidade de Lisboa, Campo Grande, Edifício C6, 1749-016 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-16 | DOI: https://doi.org/10.1515/geo-2015-0007

Abstract

A review of the entire Neogene climate in Europe is a useful tool for climate researchers, synthesizing present day knowledge on a variety of past warmer climate modes thus facilitating the debate regarding possible future climate scenarios in the Old Continent. This work centres on the European scenario, debating possible future projections and describing the Miocene and Pliocene climate in the Old Continent. With present evidences of a global warming scenario, it is highly important that we look at past climatic events in order to better predict future climate changes impact in biodiversity. The review presented here synthesizes the literature regarding climate, faunal and floral evolution for the European Neogene, and aims to help palaeoclimatic researchers and climatologists to characterize some of the boundary conditions for modelling possible analogous of IPPC climate scenarios. If the future climate projections come to be true, it is shown that the Pliocene, and particularly the Mid Piacenzian Warm Period, should be considered as the best analogue for the impact of a warming climate in Europe.

Keywords: Neogene; Climate Change; Climate Events; Europe; Climate Analogue

References

  • [1] Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., et al., Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 262–275. Google Scholar

  • [2] Pippèrr, M., Marine Micropaleontology Characterisation of Ottnangian (middle Burdigalian) palaeoenvironments in the North Alpine ForelandBasin using benthic foraminifera—Areview of the Upper Marine Molasse of southern Germany. Mar. Micropaleontol. 2011, 79, 80–99. Google Scholar

  • [3] Campani, M.,Mulch, a., Kempf, O., Schlunegger, F.,Mancktelow, N., Miocene paleotopography of the Central Alps. Earth Planet. Sci. Lett. 2012, 337-338, 174–185. Google Scholar

  • [4] Bruch, A. a., Utescher, T., Mosbrugger, V., Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 202–211. Google Scholar

  • [5] LaRiviere, J.P., Ravelo, a C., Crimmins, A., Dekens, P.S., et al., Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 2012, 486, 97–100. Google Scholar

  • [6] Böhme, M., The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 389–401. Google Scholar

  • [7] Kroh, A., Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 169 – 207. Google Scholar

  • [8] You, Y., Huber, M., Müller, R.D., Poulsen, C.J., Ribbe, J., Simulation of the Middle Miocene Climate Optimum. Geophys. Res. Lett. 2009, 36, 1–5. Google Scholar

  • [9] Böhme, M., Winklhofer, M., Ilg, A., Miocene precipitation in Europe: Temporal trends and spatial gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 212–218. Google Scholar

  • [10] Utescher, T., Bruch, A.A., Micheels, A., Mosbrugger, V., Popova, S., Cenozoic climate gradients in Eurasia — a palaeoperspective on future climate change? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 351–358. Google Scholar

  • [11] Böhme, M., Ilg, A., Winklhofer, M., Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 2008, 275, 393–401. Google Scholar

  • [12] Köhler, C.M., Heslop, D., Krijgsman, W., Dekkers, M.J., Late Miocene paleoenvironmental changes in North Africa and the Mediterranean recorded by geochemical proxies (Monte Gibliscemi section , Sicily). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 66–73. Google Scholar

  • [13] Fauquette, S., Suc, J., Bertini, A., Popescu, S., et al., How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 281–301. Google Scholar

  • [14] Carnevale, G., Longinelli, A., Caputo, D., Barbieri, M., Landini, W., Did the Mediterranean marine reflooding precede the Mio–Pliocene boundary? Paleontological and geochemical evidence from upper Messinian sequences of Tuscany, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 81–105. Google Scholar

  • [15] Lozar, F., Violanti, D., Dela, F., Bernardi, E., et al., Calcareous nannofossils and foraminifers herald the Messinian Salinity Crisis: The Pollenzo section (Alba, Cuneo; NW Italy). Geobios 2010, 43, 21–32. Google Scholar

  • [16] Garcia-Castellanos, D., Villaseñor, a, Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 2011, 480, 359–63. Google Scholar

  • [17] García, M., Maillard, A., Aslanian, D., Rabineau, M., et al., The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Mar. Geol. 2011, 284, 158–174. Google Scholar

  • [18] Dela Pierre, F., Clari, P., Bernardi, E., Natalicchio, M., et al., Messinian carbonate-rich beds of the Tertiary Piedmont Basin (NW Italy): Microbially-mediated products straddling the onset of the salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 344-345, 78–93. Google Scholar

  • [19] Billups, K., Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 185, 287–307. Google Scholar

  • [20] Billups, K., Kelly, C., Pierce, E., The late Miocene to early Pliocene climate transition in the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 267, 31–40. Google Scholar

  • [21] Verhoeven, K., Louwye, S., Eiríksson, J., De Schepper, S., A new age model for the Pliocene–Pleistocene Tjörnes section on Iceland: Its implication for the timing of North Atlantic–Pacific palaeoceanographic pathways. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 33–52. Google Scholar

  • [22] Micheels, A., Eronen, J., Mosbrugger, V., The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 2009, 67, 193–204. Google Scholar

  • [23] Rögl, F., Mediterranean and Paratethys. Facts and Hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol. Carpathica 1999, 50, 339–349. Google Scholar

  • [24] Dowsett, H.J., Haywood, A.M., Valdes, P.J., Robinson, M.M., et al., Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3and HadCM3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 83–91. Google Scholar

  • [25] Robinson, M.M., Valdes, P.J., Haywood, A.M., Dowsett, H.J., et al., Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 92–97. Google Scholar

  • [26] Naafs, B.D. a., Stein, R., Hefter, J., Khélifi, N., et al., Late Pliocene changes in the North Atlantic Current. Earth Planet. Sci. Lett. 2010, 298, 434–442. Google Scholar

  • [27] IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York 2013. Google Scholar

  • [28] Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., Trends, rhythms, and aberrations in global climate 65Ma to present. Science 2001, 292, 686–93. Google Scholar

  • [29] Wolfe, J.A., in:, Sundquist ET, Broecker WS (Eds.), Carbon Cycle Atmos. CO2 Nat. Var. Archean to Present, American Geophysical Union, Washington DC 1985, pp. 357–375. Google Scholar

  • [30] Dutton, J.F., Barron, E.J., Miocene to present vegetation changes: A possible piece of the Cenozoic cooling puzzle. Geology 1997, 25, 39–41. Google Scholar

  • [31] Jacobs, B.F., Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2004, 359, 1573–83. Google Scholar

  • [32] Kocsis, L., Vennemann, T., Hegner, E., Fontignie, D., Tutken, T., Constraints on Miocene oceanography and climate in the Western and Central Paratethys: O-, Sr-, and Nd-isotope compositions of marine fish and mammal remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 117–129. Google Scholar

  • [33] Roth-nebelsick, A., Utescher, T., Mosbrugger, V., Diester-Haass, L., Walther, H., Changes in atmospheric CO2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony , Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 205, 43 – 67. Google Scholar

  • [34] Kmenta, M., Zetter, R., Combined LM and SEM study of the upper Oligocene/lower Miocene palynoflora from Altmittweida (Saxony): Providing new insights into Cenozoic vegetation evolution of Central Europe. Rev. Palaeobot. Palynol. 2013, 195, 1–18. Google Scholar

  • [35] Śliwińska, K.K., Dybkjær, K., Schoon, P.L., Beyer, C., et al., Paleoclimatic and paleoenvironmental records of the Oligocene–Miocene transition, central Jylland, Denmark. Mar. Geol. 2014, 350, 1–15. Google Scholar

  • [36] Larsson, L.M., Dybkjær, K., Rasmussen, E.S., Piasecki, S., et al., Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 161–175. Google Scholar

  • [37] Kroh, A., Harzhauser, M., An Echinoderm Fauna from the Lower Miocene of Austria: Paleoecology and Implications for Central Paratethys Paleobiogeography. Ann. Naturhist. Mus. Wien 1999, 101A, 145–191. Google Scholar

  • [38] Velitzelos, D., Bouchal, J.M., Denk, T., Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palynol. 2014, 204, 56–117. Google Scholar

  • [39] Domning, D.P., Thomas, H., Metaxytheriumserresii (Mammalia: Sirenia) from the Early Pliocene of Libya and France: a reevaluation of its morphology, phyletic position, and biostratigraphic and paleoecological significance. Neogene Paleontol. Geol. Sahabi 1987, 16, 205–232. Google Scholar

  • [40] Domning, D.P., Pervesler, P., The sirenian Metaxytherium(Mammalia: Dugongidae) in the Badenian (Middle Miocene) of Central Europe. Austrian J. Earth Sci. 2012, 105, 125–160. Google Scholar

  • [41] Prista, G., Estevens, M., Agostinho, R., Cachão, M., The disappearance of the European/North African Sirenia (Mammalia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 387, 1–5. Google Scholar

  • [42] Piller, W.E., Harzhauser, M., Mandic, O., Miocene Central Paratethys stratigraphy – current status and future directions. Stratigraphy 2007, 4, 151–168. Google Scholar

  • [43] Harzhauser, M., Piller, W.E., Benchmark data of a changing sea —Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 8–31. Google Scholar

  • [44] Krstic, N., Savic, L., Jovanovic, G., The Neogene lakes on the Balkan land. Ann. Géologiques la Péninsule Balk. 2012, 73, 37–60. Google Scholar

  • [45] Harzhauser, M., Piller, W.E., Steininger, F.F., Circum- Mediterranean Oligo–Miocene biogeographic evolution – the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 103–133. Google Scholar

  • [46] Domingo, L., Koch, P.L., Grimes, S.T., Morales, J., López- Martínez, N., Isotopic paleoecology of mammals and the Middle Miocene Cooling event in theMadrid Basin (Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 339-341, 98–113. Google Scholar

  • [47] Hauptvogel, D.W., Passchier, S., Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica. Glob. Planet. Change 2012, 82-83, 38–50. Google Scholar

  • [48] Kashiwagi, H., Shikazono, N., Climate change during Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 199, 167–185. Google Scholar

  • [49] Mandic, O., Coric, S., Eine neue Molluskenfauna aus dem oberen Ottnangium von Rassing (NÖ) - taxonomische, biostratigraphische, paläoökologische und paläobiogeographische Auswertung. Jahrb. der Geol. Bundesanstalt 2007, 147, 387–397. Google Scholar

  • [50] Kroh, A., Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 169 – 207. Google Scholar

  • [51] Harzhauser, M., Piller,W.E.,Müllegger, S., Grunert, P., Micheels, A., Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. Glob. Planet. Change 2011, 76, 77–84. Google Scholar

  • [52] Wolfe, J.A., Tanai, T., The Miocene Seldovia Point flora of the Kenai Group, Alaska. U. S. Geol. Surv. Prof. Pap. 1980, 1105, 52. Google Scholar

  • [53] Fleming, C.A., in:, KuschelG(Ed.), Geol. Hist. New Zeal. its Biota, W. Junk, The Hague, 1975, pp. 1–86. Google Scholar

  • [54] Moore, E.J., Miocene marine mollusks from the Astoria Formation in Oregon. U. S. Geol. Surv. Prof. Pap. 1963, 419, 109. Google Scholar

  • [55] Itoigawa, J., Yamanoi, T., in:, Tsuchi P (Ed.), Pacific Neogene Events, Tokyo University Press, Tokyo 1990, pp. 3–15. Google Scholar

  • [56] Oleinik, A., Marincovich, L., Biogeographic and stable isotopic evidence for middle Miocene warming in the high latitude North Pacific. Abstr. Geol. Soc. Amer. 2001, 33, A386. Google Scholar

  • [57] Li, Q.-Y., McGowran, B., Miocene foraminifera from Lakes Entrance oil shaft, Gippsland, southeastern Australia. Mem. Assoc. Australas. Palaeontol. 2000, 22, 1–142. Google Scholar

  • [58] Böhme, M., The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 195, 389–401. Google Scholar

  • [59] Bojar, A.-V., Hiden, H., Fenninger, A., Neubauer, F., Middle Miocene seasonal temperature changes in the Styrian basin, Austria, as recorded by the isotopic composition of pectinid and brachiopod shells. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 95–105. Google Scholar

  • [60] Mandic, O., de Leeuw, A., Vuković, B., Krijgsman, W., et al., Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 475–492. Google Scholar

  • [61] Lécuyer, C., Grandjean, P., Paris, F., Robarde, M., Robineau, D., Deciphering “temperature” and “salinity” from biogenic phosphates: the 18O of coexisting fishes and mammals of the Middle Miocene sea of western France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 126, 61–74. Google Scholar

  • [62] Harzhauser, M., Mandic, O., Zuschin, M., Changes in Paratethyan marine molluscs at the Early/Middle Miocene transition: diversity, palaeogeography and palaeoclimate. Acta Geol. Pol. 2003, 53, 323–339. Google Scholar

  • [63] Wiedl, T., Harzhauser, M., Kroh, A., Ćorić, S., Piller, W.E., Ecospace variability along a carbonate platform at the northern boundary of the Miocene reef belt (Upper Langhian, Austria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 370, 232–246. Google Scholar

  • [64] Latal, C., Piller, W.E., Harzhauser, M., Palaeoenvironmental reconstructions by stable isotopes of Middle Miocene gastropods of the Central Paratethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 211, 157–169. Google Scholar

  • [65] Piller, W.E., Harzhauser, M., in:, 16. Int. Senckenb. Konf. Forschungsinstitut, Naturmuseum Senckenberg 2002, pp. 91–92. Google Scholar

  • [66] Bartol, M., Mikuž, V., Horvat, A., Palaeontological evidence of communication between the Central Paratethys and the Mediterranean in the late Badenian/early Serravalian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 394, 144–157. Google Scholar

  • [67] Schmid, P.H., Harzhauser, M., Kroh, A., Coric, S., et al., Hypoxic Events on a Middle Miocene Carbonate Platform of the Central Paratethys (Austria, Badenian, 14Ma). Ann. Naturhist.Mus.Wien 2001, 102A, 1–50. Google Scholar

  • [68] Hauptvogel, D.W., Passchier, S., Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica. Glob. Planet. Change 2012, 82-83, 38–50. Google Scholar

  • [69] Billups, K., Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 185, 287–307. Google Scholar

  • [70] Casanovas-Vilar, I., Agustí, J., Ecogeographical stability and climate forcing in the Late Miocene (Vallesian) rodent record of Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 248, 169–189. Google Scholar

  • [71] Jiménez-Moreno, G., Fauquette, S., Suc, J.-P., Aziz, H.A., Early Miocene repetitive vegetation and climatic changes in the lacustrine deposits of the Rubielos de Mora Basin (Teruel, NE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 250, 101–113. Google Scholar

  • [72] Kováč, M., Baráth, I., Fordinál, K., Grigorovich, A.S., et al., Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine–Carpathian–Pannonian junction area: A case study from the Danube Basin northern margin (Slovakia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 32–52. Google Scholar

  • [73] Micheels, A., Eronen, J., Mosbrugger, V., The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 2009, 67, 193–204. Google Scholar

  • [74] Retallack, G.J., Late Miocene climate and life on land in Oregon within a context of Neogene global change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 214, 97–123. Google Scholar

  • [75] John, C.M., Adatte, T., Mutti, M., Regional trends in clay mineral fluxes to the Queensland margin and ties to middle Miocene global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 233, 204–224. Google Scholar

  • [76] Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 399–423. Google Scholar

  • [77] Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., Trends, rhythms, and aberrations in global climate 65Ma to present. Science 2001, 292, 686–93. Google Scholar

  • [78] Wilson, D.S., Jamieson, S.S.R., Barrett, P.J., Leitchenkov, G., et al., Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 335-336, 24–34. Google Scholar

  • [79] Quaijtaal, W., Donders, T.H., Persico, D., Louwye, S., Characterising the middle Miocene Mi-events in the Eastern North Atlantic realm: A first high-resolution marine palynological record from the Porcupine Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 140–159. Google Scholar

  • [80] Ivanov, D. a., Ashraf, A.R., Mosbrugger, V., Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 255, 342–360. Google Scholar

  • [81] Bicchi, E., Ferrero, E., Gonera, M., Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 265–303. Google Scholar

  • [82] Domingo, L., Koch, P.L., Grimes, S.T., Morales, J., López- Martínez, N., Isotopic paleoecology of mammals and the Middle Miocene Cooling event in theMadrid Basin (Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 339-341, 98–113. Google Scholar

  • [83] Böhme, M., Ilg, A., Winklhofer, M., Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 2008, 275, 393–401. Google Scholar

  • [84] Campani, M., Mulch, a., Kempf, O., Schlunegger, F., Mancktelow, N., Miocene paleotopography of the Central Alps. Earth Planet. Sci. Lett. 2012, 337-338, 174–185. Google Scholar

  • [85] Hoorn, C., Straathof, J., Abels, H. a., Xu, Y., et al., A Late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 344-345, 16–38. Google Scholar

  • [86] Xiao, G., Guo, Z., Dupont-Nivet, G., Lu, H., et al., Evidence for northeastern Tibetan Plateau uplift between 25 and 20Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet. Sci. Lett. 2012, 317-318, 185–195. Google Scholar

  • [87] Micheels, A., Bruch, A.A., Eronen, J., Fortelius, M., et al., Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere – ocean general circulation model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 337–350. Google Scholar

  • [88] Bruch, A. A., Utescher, T., Mosbrugger, V., Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 202–211. Google Scholar

  • [89] Utescher, T., Bruch, A.A., Micheels, A., Mosbrugger, V., Popova, S., Cenozoic climate gradients in Eurasia — a palaeoperspective on future climate change? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 351–358. Google Scholar

  • [90] Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., et al., A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 300, 29–45. Google Scholar

  • [91] Köhler, C.M., Heslop, D., Krijgsman, W., Dekkers, M.J., Late Miocene paleoenvironmental changes in North Africa and the Mediterranean recorded by geochemical proxies (Monte Gibliscemi section , Sicily). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 66–73. Google Scholar

  • [92] Delfino, M., Rossi, M.A., Fossil crocodylid remains from Scontrone (Tortonian, Southern Italy) and the late Neogene Mediterranean biogeography of crocodylians. Geobios 2013, 46, 25–31. Google Scholar

  • [93] Svana, K., Iliopoulos, G., Fassoulas, C., New sirenian findings from Crete Island. Bull. Geol. Soc. Greece 2010, XLIII, 746–753. Google Scholar

  • [94] Bianucci, G., Gatt, M., Catanzariti, R., Sorbi, S., et al., Systematics, biostratigraphy and evolutionary pattern of the Oligo- Miocene marine mammals from the Maltese Islands. Geobios 2011, 44, 549–585. Google Scholar

  • [95] Utescher, T., Ivanov, D., Harzhauser, M., Bozukov, V., et al., Cyclic climate and vegetation change in the late Miocene of Western Bulgaria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 272, 99–114. Google Scholar

  • [96] Kern, A.K., Harzhauser, M., Soliman, A., Piller, W.E., Gross, M., Precipitation driven decadal scale decline and recovery of wetlands of Lake Pannon during the Tortonian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 317-318, 1–12. Google Scholar

  • [97] Harzhauser, M., Latal, C., Piller,W.E., The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 335–350. Google Scholar

  • [98] Ter Borgh, M., Vasiliev, I., Stoica, M., Knežević, S., et al., The isolation of the Pannonian basin (Central Paratethys): New constraints from magnetostratigraphy and biostratigraphy. Glob. Planet. Change 2013, 103, 99–118. Google Scholar

  • [99] Hably, L., Erdei, B., A refugium of Mastixia in the late Miocene of eastern Central Europe. Rev. Palaeobot. Palynol. 2013, 197, 218–225. Google Scholar

  • [100] Rey, K., Amiot, R., Lécuyer, C., Koufos, G.D., et al., Late Miocene climatic and environmental variations in northern Greece inferred from stable isotope compositions (18O, 13C) of equid teeth apatite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 388, 48–57. Google Scholar

  • [101] Andre, J., Biagi, R., Moguedet, G., Buffard, R., et al., Mixed siliciclastic–cool-water carbonate deposits over a tidedominated epeiric platform: the Faluns of l’Anjou formation (Miocene, W. France). Ann. Paléontologie 2003, 89, 113–123. Google Scholar

  • [102] Popov, S. V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L. a., et al., Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 91–106. Google Scholar

  • [103] Radionova, E.P., Golovina, L. a., Filippova, N.Y., Trubikhin, V.M., et al., Middle-Upper Miocene stratigraphy of the Taman Peninsula, Eastern Paratethys. Cent. Eur. J. Geosci. 2012, 4, 188–204. Google Scholar

  • [104] Kouwenhoven, T.J., Seidenkrantz, M., Zwaan, G.J. Van Der, Deep-water changes: the near-synchronous disappearance of a group of benthic foraminifera from the Late Miocene Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 152, 259–281. Google Scholar

  • [105] Carnevale, G., Longinelli, A., Caputo, D., Barbieri, M., Landini, W., Did the Mediterranean marine reflooding precede the Mio–Pliocene boundary? Paleontological and geochemical evidence from upper Messinian sequences of Tuscany, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 81–105. Google Scholar

  • [106] Fauquette, S., Suc, J., Bertini, A., Popescu, S., et al., How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 281–301. Google Scholar

  • [107] Bosellini, F.R., Biotic changes and their control on Oligocene- Miocene reefs: A case study from the Apulia Platform margin (southern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 393–409. Google Scholar

  • [108] Made, J. Van Der, Morales, J., Montoya, P., Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 228 – 246. Google Scholar

  • [109] Kouwenhoven, T.J., Zwaan, G.J. Van Der, A reconstruction of late Miocene Mediterranean circulation patterns using benthic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 373 – 385. Google Scholar

  • [110] Alba, D.M., Delson, E., Carnevale, G., Colombero, S., et al., First joint record of Mesopithecus and cf. Macaca in the Miocene of Europe. J. Hum. Evol. 2014, 67, 1–18. Google Scholar

  • [111] Lozar, F., Violanti, D., Dela, F., Bernardi, E., et al., Calcareous nannofossils and foraminifers herald the Messinian Salinity Crisis: The Pollenzo section (Alba, Cuneo; NW Italy). Geobios 2010, 43, 21–32. Google Scholar

  • [112] Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., et al., The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 238–255. Google Scholar

  • [113] Garcia-Castellanos, D., Villaseñor, a, Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 2011, 480, 359–63. Google Scholar

  • [114] García, M., Maillard, A., Aslanian, D., Rabineau, M., et al., The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Mar. Geol. 2011, 284, 158–174. Google Scholar

  • [115] Clauzon, G., Suc, J.P., Gautier, F., Berger, A., Loutre, M.F., Alternative interpretation of the Messinian salinity crisis: controversy resolved? Geology 1996, 24, 363–366. Google Scholar

  • [116] Hodell, D.A., Curtis, J.H., J, S.F., Raymo, M.E., Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic. Paleoceanography 2001, 16, 164–178. Google Scholar

  • [117] Pérez-asensio, J.N., Aguirre, J., Schmiedl, G., Civis, J., Messinian paleoenvironmental evolution in the lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 326-328, 135–151. Google Scholar

  • [118] García-Alix, a., Delgado Huertas, a.,Martín Suárez, E., Freudenthal, M., Environmental conditions vs. landscape. Assessment of the factors that influence small mammal fauna distribution in Southern Iberia during the latest Messinian by mean of stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 492–500. Google Scholar

  • [119] Pippèrr, M., Marine Micropaleontology Characterisation of Ottnangian (middle Burdigalian) palaeoenvironments in the North Alpine ForelandBasin using benthic foraminifera—Areview of the Upper Marine Molasse of southern Germany. Mar. Micropaleontol. 2011, 79, 80–99. Google Scholar

  • [120] Schuster, M., Duringer, P., Ghienne, J.-F., Vignaud, P., et al., The age of the Sahara desert. Science (80-. ). 2006, 311, 821. Google Scholar

  • [121] Csank, A.Z., Patterson, W.P., Eglington, B.M., Rybczynski, N., Basinger, J.F., Climate variability in the Early Pliocene Arctic: annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 339–349. Google Scholar

  • [122] Kovar-Eder, J., Kvaček, Z., Martinetto, E., Roiron, P., Late Miocene to Early Pliocene vegetation of southern Europe (7 – 4Ma) as reflected in the megafossil plant record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 321 – 339. Google Scholar

  • [123] Fortelius, M., Eronen, J., Liu, L., Pushkina, D., et al., Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 219–227. Google Scholar

  • [124] Bertini, A., Martinetto, E., Reconstruction of vegetation transects for the Messinian–Piacenzian of Italy by means of comparative analysis of pollen, leaf and carpological records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 230–246. Google Scholar

  • [125] Mosbrugger, V., Gee, C.T., Belz, G., Ashraf, A.R., Threedimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany—new methods in palaeovegetation analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 295–317. Google Scholar

  • [126] Utescher, T., Mosbrugger, V., Ashraf, a. R., Terrestrial Climate Evolution in Northwest Germany Over the Last 25 Million Years. Palaios 2000, 15, 430–449. Google Scholar

  • [127] Donders, T.H., Kloosterboer-van Hoeve, M.L., Westerhoff, W., Verreussel, R.M.C.H., Lotter, A.F., Late Neogene continental stages in NW Europe revisited. Earth-Science Rev. 2007, 85, 161–186. Google Scholar

  • [128] LaRiviere, J.P., Ravelo, a C., Crimmins, A., Dekens, P.S., et al., Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 2012, 486, 97–100. Google Scholar

  • [129] Dowsett, H., Barron, J., Poore, R., Middle Pliocene sea surface temperatures: a global reconstruction.Mar. Micropaleontol. 1996, 27, 13–25. Google Scholar

  • [130] Dowsett, H.J., Haywood, A.M., Valdes, P.J., Robinson, M.M., et al., Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3and HadCM3. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 83–91. Google Scholar

  • [131] Valentine, A., Johnson, A.L.A., Leng, M.J., Sloane, H.J., Balson, P.S., Isotopic evidence of cool winter conditions in the mid- Piacenzian (Pliocene) of the southern North Sea Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 9–16. Google Scholar

  • [132] Robinson, M.M., Valdes, P.J., Haywood, A.M., Dowsett, H.J., et al., Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 92–97. Google Scholar

  • [133] Jost, a., Fauquette, S., Kageyama, M., Krinner, G., et al., High resolution climate and vegetation simulations of the Late Pliocene, a model-data comparison over western Europe and the Mediterranean region. Clim. Past 2009, 5, 585–606. Google Scholar

  • [134] Dwyer, G.S., Chandler, M. a, Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes. Philos. Trans. R. Soc. A 2009, 367, 157–68. Google Scholar

  • [135] Jiménez-Moreno, G., Burjachs, F., Expósito, I., Oms, O., et al., Late Pliocene vegetation and orbital-scale climate changes from the western Mediterranean area. Glob. Planet. Change 2013, 108, 15–28. Google Scholar

  • [136] Da Silva, C.M., Landau, B., Domènech, R., Martinell, J., Pliocene Atlantic molluscan assemblages from the Mondego Basin (Portugal): Age and palaeoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 248–254. Google Scholar

  • [137] Haywood, a. M., Sellwood, B.W., Valdes, P.J., Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. Geology 2000, 28, 1063–1066. Google Scholar

  • [138] Naafs, B.D. a., Stein, R., Hefter, J., Khélifi, N., et al., Late Pliocene changes in the North Atlantic Current. Earth Planet. Sci. Lett. 2010, 298, 434–442. Google Scholar

  • [139] Agustí, J., Cabrera, L., Garcés, M., The Vallesian Mammal Turnover: A Late Miocene record of decoupled land-ocean evolution. Geobios 2013, 46, 151–157. Google Scholar

  • [140] Dolan, a. M., Koenig, S.J., Hill, D.J., Haywood, a. M., DeConto, R.M., Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) – experimental design. Geosci. Model Dev. 2012, 5, 963–974. Google Scholar

  • [141] Billups, K., Kelly, C., Pierce, E., The late Miocene to early Pliocene climate transition in the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 267, 31–40. Google Scholar

  • [142] O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B., De Gracia, C., History of upwelling in the Tropical Eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 348-349, 59–66. Google Scholar

  • [143] Böhme, M., Bruch, A. a., Selmeier, A., The reconstruction of Early and Middle Miocene climate and vegetation in Southern Germany as determined from the fossil wood flora. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 91–114. Google Scholar

  • [144] Utescher, T., Mosbrugger, V., Ivanov, D., Dilcher, D.L., Presentday climatic equivalents of European Cenozoic climates. Earth Planet. Sci. Lett. 2009, 284, 544–552. Google Scholar

  • [145] Rögl, F., Mediterranean and Paratethys. Facts and Hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol. Carpathica 1999, 50, 339–349. Google Scholar

  • [146] Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., et al., Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 304, 262–275. Google Scholar

  • [147] Popov, S. V., Rögl, R., Rozanov, A.Y., Steininger, F.R., et al., Lithological-Paleogeographic maps of Paratethys - 10 maps Late Eocene to Pliocene. Cour. Forschungsinstitut Senckenb. 2004, 250, 1–46. Google Scholar

  • [148] Martín, J.M., Braga, J.C., Aguirre, J., Puga-Bernabéu, Á., History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic– Mediterranean marine passage. Sediment. Geol. 2009, 216, 80–90. Google Scholar

  • [149] Bruch, a. a., Utescher, T., Mosbrugger, V., Gabrielyan, I., Ivanov, D. a., Late Miocene climate in the circum-Alpine realm—a quantitative analysis of terrestrial palaeofloras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 270–280. Google Scholar

  • [150] Bruch, A. a., Uhl, D., Mosbrugger, V., Miocene climate in Europe — Patterns and evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 1–7. Google Scholar

About the article

Received: 2014-05-05

Accepted: 2014-08-05

Published Online: 2015-02-16


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0007.

Export Citation

©2015 Gonçalo A. Prista et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in