Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Petrography and Geochemistry (Trace, Ree and Pge) of Pedda Cherlo Palle Gabbro-Diorite Pluton, Prakasam Igneous Province, Andhra Pradesh, India

K.S.V. Subramanyam / U.V.B. Reddy / V. Balaram / Parijat Roy
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/geo-2015-0014

Abstract

Prakasam Igneous Province (PIP) is an important geological domain in the Eastern Dharwar Craton (EDC), found in the junction zone between the EDC and Eastern Ghat Mobile Belt (EGMB). The Pedda Cherlo Palle (PCP) gabbros are massive, leucocratic-mesocractic, and show cumulus textures with minerals plagioclase, cpx, and amphiboles. Compositionally, plagioclase is a labradorite-bytownite, cpx is diopside to augite, olivines are hyalosiderites and amphiboles are magnesiohornblendes. PCP gabbros have normal SiO2, high Al2O3, moderate to high TiO2, Na2O and medium Fe2O3, so, classified as subalkaline tholeiitic gabbros. Fractionated rare earth element (REE) patterns, high abundance of large ion lithofile elements (LILE) and transitional metals coupled with light REE (LREE) relative enrichment over heavy REE (HREE) and Nb are characteristics of partial melting of depleted mantle and melts that have undergone fractional crystalisation. These partial melts are enriched in LREE and LILE, due to the addition of slab derived sediment and fluids. PCP gabbros contain low abundance (5.1 to 24.6 ng/g) of platinum group elements (PGE), and show an increase in the order Ir>Os>Pt>Ru»Pd>Rh. We propose that the subduction related intraoceanic island arc might have accreted to the southeastern margin of India to the east of Cuddapah basin in a collisional regime that took place during Ur to Rodinia amalgamations.

Keywords: Prakasam Igneous Province; Gabbros; IAT; PGE; Fractional Crystalisation

References

  • [1] Ratnakar J., Leelanandam C., The Purimetla gabbros, Prakasam District, Andhra Pradesh, India, J. Earth Syst. Sci., 1985, 94, 305-313.Google Scholar

  • [2] Jyotender Reddy Y., Leelanandam C., Occurrence of Nepheline Syenites within the Pasupugallu gabbro-anorthosite pluton, Prakasam district, Andhra Pradesh, Curr. Sci., 1986, 55, 1190-1191.Google Scholar

  • [3] Prasada Rao A.D., Rao K.N., Murthy, Y.G.K., Gabbro-anorthositepyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam district, A.P: Records of Geological Survey of India, 1988, 116, 1-20.Google Scholar

  • [4] Madhavan V., Mallikarjuna Rao J., Subrahmanyam K., Krishna S.G., Leelanandam C., Bedrock Geology of the Elchuru Alkaline Pluton, Prakasam District, Andhra Pradesh. Alkaline Rocks, Geological Survey of India Memoir No. 15, 1989 Ed. Leelanandam C.Google Scholar

  • [5] Leelanandam C., The Prakasam Alkaline Province in Andhra Pradesh, India, J. Geol. Soc. India., 1989, 34, 25-45.Google Scholar

  • [6] Leelanandam C., Jyothender Reddy Y., Anorthosite Dyke from the Pasupugallu Gabbro Pluton, Prakasam District, Andhra Pradesh, India, Curr. Sci., 1990, 59, 105-108.Google Scholar

  • [7] Vijaya Kumar K., Ratnakar J., The gabbros of Prakasam alkaline province, Andhra Pradesh, India. J. Geol. Soc. India., 1995, 46, 245-254.Google Scholar

  • [8] Prasada Rao A.D., Rao K.N., Murthy, Y.G.K., Gabbro-anorthositepyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam district, A.P: Records of Geological Survey of India, 1988, 116, 1-20.Google Scholar

  • [9] Prasada Rao A.D., Rao K.N., and Murthy Y.G.K., Gabbroanorthosite- pyroxenite complexes and alkaline rocks of Chimakurti-Elchuru area, Prakasam district, A.P: (abstracts) Symposium on Archean Geochemistry, 1987, 95-97.Google Scholar

  • [10] Krishna A.K., Murthy N.N.,Govil P.K., Multielement Analysis of Soils by Wavelength- Dispersive X-ray Fluorescence Spectrometry, At. Spectrosc., 2007, 28(6), 202-214.Google Scholar

  • [11] Subramanyam K.S.V., Balaram V., Reddy U.V.B., Satyanarayanan M., Parijat Roy and Sawant S.S., Problems Involved in Using Improper Calibration CRMs in Geochemical Analyses: A Case Study onMafic Rocks of Boggulakonda Pluton, East of Cuddapah Basin, India: Mapan, 2013, 28(1), 1-9, DOI 10.1007/s12647-012-0028-7.CrossrefGoogle Scholar

  • [12] Subramanyam K.S.V., Balaram V., Reddy U.V.B., Parijat Roy., Sawant S.S., Trace, REE and PGE Geochemistry of the Mesoproterozoic Boggulakonda Gabbroic Rocks in the High-Grade Terrain adjoining Nellore Schist Belt, South East India: Geological Society of India Special Publication, No.2,2014, 184-204.Google Scholar

  • [13] Balaram V., Ramavati Mathur., Banakar V. K., James R Hein., Rao C.R.M., Gyanaeswara Rao T., Dasaram B., Determination of platinum-group elements (PGE) and gold (Au) inmanganese nodule samples by nickel sulphide fire-assay and Te coprecipitation with ICP-MS. Indian. J. Mar. Sci., 2006, 35, 7-16.Google Scholar

  • [14] Beard J.S., Day H.W., Origin of gabbro pegmatite in the Smartville intrusive comples, northern Sierra Nevada, California, Am. Mineral., 1988, 71, 1085-1099.Google Scholar

  • [15] Jakob K.J., Ilyav V., Christian T., and Brooks C.K., Crystallization of the Skaergaard Intrusion from an Emulsion of Immiscible Ironand Silica-rich Liquids: Evidence from Melt Inclusions in Plagioclase, J. Petrol., 2011, 52, 345-373.Google Scholar

  • [16] Deer W.A., Wager L. R., Olivines from the Skaergaard intrusion, Kangerdluqssuak, East Greenland, Am. Mineral., 1939, 24, 18-25.Google Scholar

  • [17] Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi D., Nomenclature of pyroxenes. Am. Mineral., 1988, 62, 53-62.Google Scholar

  • [18] Kretz R., Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim. Cosmochim. Acta., 1982, 46,411-422.CrossrefGoogle Scholar

  • [19] Lindsley D.H., Pyroxene thermometry. Am. Mineral., 1983, 68, 477-493.Google Scholar

  • [20] Arculus R. J., Wills K. J. A., The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc; J. Petrol., 1980, 21, 743-799.CrossrefGoogle Scholar

  • [21] Burns L.E., The Boarder Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island arc volcanics. Can. J. Earth. Sci., 1985, 22, 1020-1038.CrossrefGoogle Scholar

  • [22] Elthon D., Petrology of gabbroic rocks from the Mid-Cayman rise spreading center. J. Geophys. Res., 1987, 92, 658-682.CrossrefGoogle Scholar

  • [23] Beccaluva L., Macciotta G., Piccardo G.B., Zeda O., Clinopyroxene composition of ophiolite basalts as petrogenetic indicator, 1989, Chem. Geol., 77, 165-182.Google Scholar

  • [24] Irvine T.N., and Baragar W.R.A., A guide to the chemical classification of the common igneous rocks. Can. J. Earth. Sci., 1971, 8, 523-548CrossrefGoogle Scholar

  • [25] Cox K. G., Bell J. D., Pankhurst R. J.,The Interpretation of Igneous Rocks, 1979, George Allen & Unwin.Google Scholar

  • [26] Wilson M., Igneous Petrogenesis: Unwin Hyman publications. 1989, London, 466p.Google Scholar

  • [27] Cawthorn R.G.,Strong D.F., The petrogenesis of komatiites and related rocks as evidence for a layered upper mantle, Earth. Planet. Sc. Lett.,1974, 23,369-375.CrossrefGoogle Scholar

  • [28] Sun S.S. McDonough W.W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D and Norry, M.J (Eds.) Magmatism in the Ocean Basins. Spec. Publ. Vol. Geol. Soc. Lond., 1989, No. 42, 313-345.CrossrefGoogle Scholar

  • [29] Dungan M.A., Rhodes J.M., Residual glasses and melt inclusions in basalts from in DSDP Leg 45 and 46: evidence formagma mixing. Contrib. Mineral. Petrol., 1978, 67, 417-431.CrossrefGoogle Scholar

  • [30] Mullen, E.D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and implications for petrogenesis. Earth. Planet. Sc. Lett., 1983, 62, 53-62.Google Scholar

  • [31] Shervais J. W., Ti-V plots and the petrogenesis of modern and ophiolitic lavas; Earth. Planet. Sc. Lett., 1982, 59, 101-118.CrossrefGoogle Scholar

  • [32] Naldertt A.J., Duke J.M., Platinum Metals Magmatic sulphide ores, Science, 1980, 208, 1417-1424.Google Scholar

  • [33] Kepezhinskas P., Marc J.D., Nonchondritic Pt/Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources, Geology, 2001, 29,851-854.Google Scholar

  • [34] Barnes S.J., Maier W.D., The Fractionation of Ni, Cu and The Noble Metals In Silicate and Sulfide Liquids. In Dynamic Processes in Magmatic Ore Deposits and their application in mineral exploration. Editsd par Keays, R.R., Lesher, C.M. Lightfoot, P.C. et Farrow, C.E.G. Geological Association of Canada, Short Course, 1988, 13, 69-106.Google Scholar

  • [35] Garuti G., Fershtater G., Bea F., Montero P., Pushkarev E.V., Zaccarini F., Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results, Tectonophysics, 1997, 276, 181-194.Google Scholar

  • [36] McInnes, B.I.A., Mcbride J.S., Evans N.J., Lambert D.D., Andrew A. A., OsmiumIsotope constraints on Ore Metal Recycling in Subduction Zones. Science, 1999, 286, 512-516.Google Scholar

  • [37] Momme P., Brooks C.K., Tegner C., Keays R.R., The behaviour of platinum-group elements in basalts from the East Greenland rifted margin, Contrib. Mineral. Petrol., 143, 133-153.Google Scholar

  • [38] Barnes S.J., Couture J.-F., Sawyer E.W., Bouchaib C., Nickel- Copper Occurrence in the Belleterre-Anglier Belt of the Pontiac Subprovince and the Use of Cu-Pd Ratios in Interpreting Platinum-Group Element Distributions, Econ. Geol., 1993, 88, 1402-1418.CrossrefGoogle Scholar

  • [39] Barnes S.J., Maier W.D., The Fractionation of Ni, Cu and The Noble Metals In Silicate and Sulfide Liquids. In Dynamic Processes in Magmatic Ore Deposits and their application in mineral exploration. Editsd par Keays, R.R., Lesher, C.M. Lightfoot, P.C. et Farrow, C.E.G. Geological Association of Canada, Short Course, 1988, 13, 69-106.Google Scholar

  • [40] Hinchey J.C., Hottori K.H., Lavigne M., Geology, Petrology and controls on PGE Mineralisation of the Southern Roby and Twilight Zones, Lac des Iles Mines, Canada. Econ. Geol., 2005, 100, 43-61.CrossrefGoogle Scholar

  • [41] Chalapathi Rao N.V., Lehman B., Balaram V., Platinum-group element (PGE) geochemistry of Deccan orangeites, Bastar craton, central India: Implication for a non-terrestrial origin for iridium enrichment at the K-Pg boundary. J. Asian. Earth. Sci., 2014, http://dx.doi.org/10.1016/j.jseaes.2013.06.009. CrossrefGoogle Scholar

  • [42] Becker M., Le Roex A.P., Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution. J. Petrol., 2006, 47, 673-703.Google Scholar

  • [43] Flower M.F.J., Robinson P.T., Schmincke H.-U., Ohnmacht W., Magma Fractionation Systems Beneath the Mid-Atlantic Ridge at 36-37oN, Contrib. Mineral. Petrol., 1977, 64, 167-195.Google Scholar

  • [44] Geist D., Naumann T., Larson P., Evolution of Galapagos Magmas: Mantle and Crustal Fractionation without Assimilation, J. Petrol.,1998, 39, 953-971.CrossrefGoogle Scholar

  • [45] Rollinson H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation, Longman, 1993, UK. p.352.Google Scholar

  • [46] Walter M.J., Melting of Garnet Peridotite and the Origin of komatiite and Depleted Lithosphere, J. Petrol.,1998, 39, 29-60.CrossrefGoogle Scholar

  • [47] Fryer B.F., Greenough J.D., Evidence for mantle heterogeneity from platinum-group element abundances in Indian Ocean basalts, Can. J. Earth. Sci., 1992, 29 2329-2340.Google Scholar

  • [48] Greenough J.D., Owen J., Ruffman A., Noble metal concentrations in shoshonitic lamprophyres: analysis of the Weekend dykes, Eastern Shore, Nova Scotia, Canada. J. Petrol., 1993, 34, 1247-1269.CrossrefGoogle Scholar

  • [49] Chen G., Xia B., Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet, J. Asian. Earth. Sci., 2008, 32, 406-422.CrossrefGoogle Scholar

  • [50] Rehkamper M., Halliday A. N., Fitton J. G., Lee D. C., Wieneke M., Arndt, N. T., Ir, Ru, Pt, and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinumgroup elements in the mantle., Geochim. Cosmochim. Ac.,1999, 63, 3915-3934.CrossrefGoogle Scholar

  • [51] Fryer B.F., Greenough J.D., Evidence for mantle heterogeneity from platinum-group element abundances in Indian Ocean basalts, Can. J. Earth. Sci.,1992, 29 2329-2340.Google Scholar

  • [52] Chen G., Xia B., Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet, J. Asian. Earth. Sci., 2008, 32, 406-422.CrossrefGoogle Scholar

  • [53] Rehkämper M., Halliday A.N., Barfod D., Fitton J.G., Platinum group element abundance patterns in different mantle environments. Science, 1997, 278, 1595-1598.Google Scholar

  • [54] AlardO., GriflnW.L., Lorand J.P., Jackson S.E., O’ Reilly S.Y., Nonchondritic distribution of the highly siderophile elements inmantle sulphides., Nature., 407, 2000, 891-894.Google Scholar

  • [55] Lorand J.P., Keays R.R., Bodinier J.I., Base and noble metal enrichment across the lithospheric-asthenospheric boundary of mantle diapiars: Evidence from the Lanze lherzolite massif. J. Petrol., 1993, 34, 1111-1140.CrossrefGoogle Scholar

  • [56] Pearce J.A., Gale G.H., Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. In: Volcanic processes in ore genesis, 14-24, London: IMM, Geol. Soc. London, 1977.Google Scholar

  • [57] Pollock J.C., Hibbard J.P., Geochemistry and tectonic significance of the StonyMountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolina, Gondwana Res., 2010, 17, 500-515.CrossrefGoogle Scholar

  • [58] Bektas O„ Eyoboglu Y„ Sen C., Rojay B., Reversely zoned Alaskan-type mafic-ultramafic cumulates in the eastern Pontide magmatic arc, NE Turkey; Geophysical Research Abstracts, 2007, 9, 1036.Google Scholar

  • [59] Pearce J.A., Stern R.J., Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives, Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Geophysical Monograph Series 166, 2007, 63-85.Google Scholar

  • [60] Munker C., Worner G., Yogodzinski G., Churikova T., Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas, Earth. Planet. Sc. Lett., 2004, 224, 275-293.Google Scholar

  • [61] Pearce J.A., Gale G.H., Identification of ore-deposition environment from trace element geochemistry of associated igneous host rocks. In: Volcanic processes in ore genesis, 14-24, London: IMM, Geol. Soc. London, 1977.Google Scholar

  • [62] Prefit M.R., Gust. D.A., Bence A.E., Arculus R.J., Taylor S.R., Chemical characteristics of island-arc basalts: Implications for mantle sources, Chem. Geol., 1980, 30, 227-256.CrossrefGoogle Scholar

  • [63] Class. C, Altherr. R, Volker. F, Eberz.G, Mcculloch M.T., Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, northern Kenya, Chem. Geol.,1994, 113, 1-22.Google Scholar

  • [64] Tatsumi, Y., K. Ishizaka., Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan. I. Petrographical and chemical characteristics, Earth. Planet. Sc. Lett., 1982, 60, 293-304.CrossrefGoogle Scholar

  • [65] Sun, S -s., Nesbitt, R. W., Chemical heterogeneityof the Archaean mantle, composition of the earth and mantle evolution, Earth. Planet. Sc. Lett., 1977, 35, 429-448.CrossrefGoogle Scholar

  • [66] Taylor. B Back arc basins: Tectonics and magmatism, Plenum Press, New York, 1995, 524p.Google Scholar

  • [67] Mandal A., Ray A., Debnath M., Paul S.P., Petrology, geochemistry of hornblende gabbro and associated dolerite dyke of Paharpur, Puruliya, West Bengal: Implication for petrogenetic process and tectonic setting, J. Earth. Syst. Sci., 2012, 121, 793-812.Google Scholar

  • [68] Pearce J. A., Cann J. R., Tectonic setting of basic volcanic rocks determined using trace element analyses, Earth. Planet. Sc. Lett., 1973, 19, 290-300.CrossrefGoogle Scholar

  • [69] Zhao J.H., Zhou M.F., Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle, Precambrian Res., 2007, 152, 27-47.Google Scholar

  • [70] Farahat E.S., The Neoproterozoic Kolet Um Kharit bimodal metavolcanic rocks, south Eastern Desert, Egypt: a case of enrichment from plume interaction?, Int. J. Earth Sci.( Geol Rundsch), 2006, 95, 275-287. CrossrefGoogle Scholar

About the article

Received: 2014-04-01

Accepted: 2014-09-30

Published Online: 2015-09-25


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0014.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
K.S.V. Subramanyam, M. Santosh, Qiong-Yan Yang, Ze-ming Zhang, V. Balaram, and U.V.B. Reddy
Journal of Asian Earth Sciences, 2016, Volume 130, Page 116

Comments (0)

Please log in or register to comment.
Log in