Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Analysis of spatial variability of near-surface soil moisture to increase rainfall-runoff modelling accuracy in SW Hungary

P. Hegedüs / S. Czigány / E. Pirkhoffer / L. Balatonyi / R. Hickey
  • 400 East University Way, Department of Geography, Central Washington University, Ellensburg, WA, 98926 United States
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-15 | DOI: https://doi.org/10.1515/geo-2015-0017


Between September 5, 2008 and September 5, 2009, near-surface soil moisture time series were collected in the northern part of a 1.7 km2 watershed in SWHungary at 14 monitoring locations using a portable TDR-300 soil moisture sensor. The objectives of this study are to increase the accuracy of soil moisture measurement at watershed scale, to improve flood forecasting accuracy, and to optimize soil moisture sensor density.

According to our results, in 10 of 13 cases, a strong correlation exists between the measured soil moisture data of Station 5 and all other monitoring stations; Station 5 is considered representative for the entire watershed. Logically, the selection of the location of the representative measurement point(s) is essential for obtaining representative and accurate soil moisture values for the given watershed. This could be done by (i) employing monitoring stations of higher number at the exploratory phase of the monitoring, (ii) mapping soil physical properties at watershed scale, and (iii) running cross-relational statistical analyses on the obtained data.

Our findings indicate that increasing the number of soil moisture data points available for interpolation increases the accuracy of watershed-scale soil moisture estimation. The data set used for interpolation (and estimation of mean antecedent soil moisture values) could be improved (thus, having a higher number of data points) by selecting points of similar properties to the measurement points from the DEM and soil databases. By using a higher number of data points for interpolation, both interpolation accuracy and spatial resolution have increased for the measured soil moisture values for the Pósa Valley.

Keywords: Runoff modeling; Soil moisture estimation; Monitoring station density optimization; Spatial interpolation; Soil moisture spatial pattern


  • [1] Graeff T., Zehe E., Blume T., Francke T., Schröder B., Predicting event response in a nested catchment with generalized linear models and a distributed watershed model. Hydrological Processes, 2012, 26, 3749–3769. CrossrefWeb of ScienceGoogle Scholar

  • [2] Penna D., Borga M., Norbiato D., Dalla Fontana G., Hillslope scale soil moisture variability in a steep alpine terrain. Journal of Hydrology, 2009, 364: 311-327. Web of ScienceGoogle Scholar

  • [3] Brocca L., Morbidelli R., Moramarco T., Melone F., Soil moisture spatial variability in experimental areas of central-Italy. Journal of Hydrology, 2007, 333, 356-373. Web of ScienceGoogle Scholar

  • [4] Zehe E., Blöschl G., Predictability of hydrologic response at the plot and catchment scales—the role of initial conditions. Water Resources Research, 2004, 40, 10, W10202. DOI: 10.1029/2003WR002869. CrossrefGoogle Scholar

  • [5] Billa L., Assilzadeh H., Mansor S., Mahmud A. R., Ghazali A. H., Comparison of recorded rainfall with quantitative precipitation forecast in a rainfall-runoff simulation for the Langat river basin, Malaysia. Central European Journal of Geosciences, 2011, 3, 3, 309-317. Web of ScienceGoogle Scholar

  • [6] Pandey V., Pandey P. K., Spatial and temporal variability of soil mositure. International Journal of Geosciences, 2010, 1, 87-98. Google Scholar

  • [7] Püspöki Z., Szabó S., Demeter G., Szalai K., McIntosh R.W., Vincze L., Németh G., Kovács I., The statistical relationship between unconfined compressive strengths and the frequency distributions of slope gradients: A case study in northern Hungary. Geomorphology, 2005, 71, 3-4, 424-436. Google Scholar

  • [8] Watanabe K., Kito T., Shuhui D., Wu J., Greer R.C., Flury M., Water infiltration into a frozen soil with simultaneous melting of the frozen layer. Vadose Zone J., 12, DOI:10.2136/vzj2011.0188, 2013, Abstract (dx.doi.org/10.2136/vzj2011.0188). CrossrefGoogle Scholar

  • [9] Hegedüs P., Czigány S., László B., Pirkhoffer E., Analysis of soil boundary conditions of flash floods in a small basin in SW Hungary. Central European Journal of Geosciences, 2013, 5, 1, 97-111. Web of ScienceGoogle Scholar

  • [10] Minea G., Assessment of flash flood potential of Bâsca River catchment (Romania) based on physiographic factors. Central European Journal of Geosciences, 2013, 4, 3, 344-353. Web of ScienceGoogle Scholar

  • [11] Borga M., Gaume E., Creutin J.D., Marchi L., Surveying flash floods: gauging the ungauged extremes. Hydrological Processes, 2008, 22, 18, 3883–3885. DOI: 10.1002/hyp-7111. CrossrefWeb of ScienceGoogle Scholar

  • [12] Cassardo C., Balsamo G.P., Cacciamani C., Cesari D., Paccagnella T., Pelosini R., Impact of soil surface moisture initialization on rainfall in a limited area model, a case study of the 1995 South Ticino flash flood. Hydrological Processes, 2002, 16, 1301-1317. CrossrefGoogle Scholar

  • [13] Brocca L., Melone F., Moramarco T., Morbidelli R., Antecedent wetness conditions based on ERS scatterometer data. Journal of Hydrology, 2009, 364, 73-87. Web of ScienceGoogle Scholar

  • [14] Heathman G.C., Cosh M.H., Merwade V., Han E.,Multi-scale temporal stability analysis of surface and subsurface within the Upper Cedar Creek Watershed, Indiana. Catena, 2012, 95, 91-103 Web of ScienceCrossrefGoogle Scholar

  • [15] Koren V., Moreda F., Smith M., Use of soil moisture observations to improve parameter consistency inwatershed calibration. Physics and Chemistry of the Earth, 2008, 33, 1068-1080. CrossrefWeb of ScienceGoogle Scholar

  • [16] Miralles D.G., Crow W.T., Cosh M.H., Estimating Spatial Sampling Errors in Coarse-Scale SoilMoisture Estimates Derived from Point-Scale Observations. Journal of Hydrometeorology, 2010, 11, 1423-1429. Web of ScienceCrossrefGoogle Scholar

  • [17] Albertson J. D., Kiely G., On the structure of soil moisture time series in the context of land surface models. Journal of Hydrology, 2000, 243, 101-119. Google Scholar

  • [18] Mohanty B. P., Skaggs T. H., Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Advances in Water Resources, 2001, 24, 1051-1067. CrossrefGoogle Scholar

  • [19] Wang C., Zuo Q., Zhang R., Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method. Journal of Hydrology, 2008, 352, 309–321. Web of ScienceGoogle Scholar

  • [20] Wang L., Qu J. J., Satellite remote sensing applications for surface soilmoisture monitoring: a review. Frontiers of Earth Science in China, 2009, 3 (2), 237-247. CrossrefGoogle Scholar

  • [21] Venkatesh B., Lakshman N., Puranara B. K., Reddy V. B., Analysis of observed soil moisture patterns under different land covers in Western Ghats, India. Journal of Hydrology, 2011, 397, 281-294. Web of ScienceGoogle Scholar

  • [22] Lacava T., Brocca L., Calice G., Melone F., Moramarco T., Pergola N., Tramutoil V., Soil moisture variations monitoring by AMSUbased soil wetness indices: a long-term inter-comparison with ground measurements. Remote Sensing of Environment, 2010, 114, 2317-2325. Web of ScienceGoogle Scholar

  • [23] Fu B., Wang J., Chen L., Qiu Y., The effects of landuse on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena, 2003, 54, 197-213. CrossrefGoogle Scholar

  • [24] Loew A., Schlenz F., A dynamic approach for evaluating coarsescale satellite soil moisture products. Hydrology and Earth System Sciences, 2011, 15, 75-90. Web of ScienceCrossrefGoogle Scholar

  • [25] Westcott N. E., Knapp V. H., Hilberg S. D., Comparison of gage and multi-sensor precipitation estimates over range of spatial and temporal scales in the Mid-Western United States. Journal of Hydrology, 2008, 351, 1-12. Web of ScienceGoogle Scholar

  • [26] Bárdossy A., Lehmann W., Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis. Journal of Hydrology, 1998, 206, 1-15. CrossrefGoogle Scholar

  • [27] Zhu Q., Lin H., Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 2011, 163, 45-54. Web of ScienceGoogle Scholar

  • [28] Hu W., Shao M.-A., Hou M. T., She D. L., Si B. C., Mean soil water content estimation using measurements from time stable locations of adjacent or distant areas. Journal of Hydrology, 2013, 497: 234-243. Web of ScienceGoogle Scholar

  • [29] Jia Y.-H., Shao M.-A., Jia X.-X., Spatial pattern of soil moisture and its temporal stability within profiles on a loessial slope in northwestern China. Journal of Hydrology, 2013, 495: 150-161. Web of ScienceGoogle Scholar

  • [30] Penna D., Brocca L., Borga M., Dalla Fontana, G., Soil moisture temporal stability at different depths on two alpine hillslopes during wet and dry periods. Journal of Hydrology, 2013, 477: 55- 71. Web of ScienceGoogle Scholar

  • [31] Yao X., Fu B., Lü Y., Sun F., Wang S., Liu M., Comparison of four spatial interpolation methods for estimating soil moisture in a complex terrain catchment. PloS one, 2013, 8 (1), e54660. CrossrefWeb of ScienceGoogle Scholar

  • [32] Czigány S., Pirkhoffer E., Geresdi I., Impact of extreme rainfall and soil moisture on flash flood generation. Időjárás, 2010, 114, 79-100. Google Scholar

  • [33] Keresztény B., Ilisics N., Balatonyi L., Hegedüs P., Pirkhoffer E., Czigány S., [Collecting and employment of soil parameters for numerical flash flood modeling in ultra-small watersheds]. Riscuri si Catastrofe, 2011, 9, 45-57. Google Scholar

  • [34] Cosh M. H., Jackson T. J., Bindlish R., Pruegger J. H., Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sensing of Environment, 2004, 92, 427-435. CrossrefGoogle Scholar

  • [35] Cosh M. H., Jackson T. J., Starks P., Heathman G., Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. Journal of Hydrology, 2006, 323, 168-177. Google Scholar

  • [36] Gyenizse P., Vass P., A természeti környezet szerepe a Nyugat- Mecsek településeinek kialakulásában és fejlődésében. [Role of physical environment on the development in the settlements of the Western-Mecsek Hills]. Földrajzi Értesítő– Hungarian Geographical Bulletin, 1998, 47, 131-148 (in Hungarian with English summary). Google Scholar

  • [37] Lóczy D., A vízellátottság mint tájtulajdonság értékelése különböző földértékelési rendszerekben. [Assessing water availability as a landscape property in various land evaluation schemes]. Földrajzi Értesítő – Hungarian Geographical Bulletin, 2011, 49, 215- 234 (in Hungarian). Google Scholar

  • [38] Brocca L., Melone F., Moramarco T., Morbidelli R., Spatialtemporal variability of soil moisture and its estimation across scales. Water Resources Research, 46, 1- 14. Web of ScienceGoogle Scholar

  • [39] Weyman D. R., measurement of the downslope flow of water in a soil. Journal of Hydrology, 1973, 20, 267-288. CrossrefGoogle Scholar

  • [40] Anderson M. G., Kneale P. E., Topography and hillslope soil water relationships in a catchment of low relief. Journal of Hydrology, 1980, 47, 115-128. CrossrefGoogle Scholar

About the article

Received: 2014-08-29

Accepted: 2014-10-28

Published Online: 2015-04-15

Citation Information: Open Geosciences, Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0017.

Export Citation

©2015 P. Hegedüs et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Boglárka Balázs, Tibor Bíró, Gareth Dyke, Sudhir Kumar Singh, and Szilárd Szabó
Hydrological Sciences Journal, 2018, Page 1

Comments (0)

Please log in or register to comment.
Log in