Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Spatio-temporal filtering for determination of common mode error in regional GNSS networks

Janusz Bogusz
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Gruszczynski
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Figurski
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Klos
  • Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-16 | DOI: https://doi.org/10.1515/geo-2015-0021

Abstract

The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually estimated with the regional spatial filtering, such as the "stacking". In this paper, we show the stacking approach for the set of ASG-EUPOS permanent stations, assuming that spatial distribution of the CME is uniform over the whole region of Poland (more than 600 km extent). The ASG-EUPOS is a multifunctional precise positioning system based on the reference network designed for Poland. We used a 5- year span time series (2008-2012) of daily solutions in the ITRF2008 from Bernese 5.0 processed by the Military University of Technology EPN Local Analysis Centre (MUT LAC). At the beginning of our analyses concerning spatial dependencies, the correlation coefficients between each pair of the stations in the GNSS network were calculated. This analysis shows that spatio-temporal behaviour of the GPS-derived time series is not purely random, but there is the evident uniform spatial response. In order to quantify the influence of filtering using CME, the norms L1 and L2 were determined. The values of these norms were calculated for the North, East and Up components twice: before performing the filtration and after stacking. The observed reduction of the L1 and L2 norms was up to 30% depending on the dimension of the network. However, the question how to define an optimal size of CME-analysed subnetwork remains unanswered in this research, due to the fact that our network is not extended enough.

Keywords: GPS; ASG-EUPOS; spatio-temporal filtering; common mode error (CME); stacking

References

  • [1] Bosy J., Graszka W., Leończyk M. (2007): "ASG-EUPOS - A multifunctional precise satellite positioning system in Poland". European Journal of Navigation, vol. 5 (4) September 2007, pp. 2-6 Google Scholar

  • [2] Krypiak-Gregorczyk A., Wielgosz P., Gosciewski D., Paziewski J. (2013): "Validation of Approximation Techniques for Local Total Electron Content Mapping". Acta Geodynamica et Geomaterialia Vol. 10, No. 3 (171), 275–283 (DOI: 10.13168/AGG.2013.0027) CrossrefGoogle Scholar

  • [3] Bosy J. (2014): "Global, Regional and National Geodetic Reference Frames for Geodesy and Geodynamics". Pure Appl. Geophys. 171 (2014), 783–808, DOI 10.1007/s00024-013-0676-8. Web of ScienceCrossrefGoogle Scholar

  • [4] Gross, R., Beutler, G., and Plag, H.-P. (2009): "Integrated scientific and societal user requirements and functional specifications for theGGOS". In: H.-G. Plag, M. Pearlman (eds.), Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020, Springer, Berlin, 2009, 209-224. Google Scholar

  • [5] Mao A., Harrision C., Dixon T. (1999): "Noise in GPS coordinate time series." J Geophys Res 104(B2): 2797–2816. Google Scholar

  • [6] Williams S. D. P. (2003): "The effect of coloured noise on the uncertainties of rates estimated from geodetic time series." J Geod 76:483–494, DOI 10.1007/s00190-002-0283-4. CrossrefGoogle Scholar

  • [7] Williams S. D. P., Y. Bock, P. Fang, P. Jamason, R. M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. J. Johnson (2004): "Error analysis of continuous GPS position time series", J. Geophys. Res., 109, B03412, doi:10.1029/2003JB002741. CrossrefGoogle Scholar

  • [8] Kenyeres, A., Bruyninx, C.: (2009): "Noise and Periodic Terms in the EPN Time Series. Geodetic Reference Frames", International Association of Geodesy Symposia Volume 134, 2009, pp. 143- 148. Google Scholar

  • [9] Klos A., Bogusz J., Figurski M., Kosek W. (2014a): "Uncertainties of geodetic velocities from permanent GPS observations: Sudeten case study". Acta Geodynamica et Geomaterialia, vol. 11, no. 3(175), pp. 201-209, 2014, DOI: 10.13168/AGG.2014.0005. Web of ScienceCrossrefGoogle Scholar

  • [10] Teferle N. (2010): "Spatial filtering of coordinate time series: A brief review". COST Action ES0701 WG3 Workshop, Nottingham, 18-19 March 2010. Google Scholar

  • [11] Dong, D., P. Fang, Y. Bock, F. Webb, L. Prawirodirdjo, S. Kedar, and P. Jamason (2006): "Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis". J. Geophys. Res., 111, B03405, DOI:10.1029/2005JB003806. CrossrefGoogle Scholar

  • [12] Nikolaidis R. (2002): "Observation of geodetic and seismic deformation with the Global Positioning System", Ph.D. thesis, Univ. of Calif., San Diego, 2002. Google Scholar

  • [13] Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997): "Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake". J. Geophys. Res., 102(B8), pp. 18057-18070, DOI:10.1029/97JB01378. CrossrefGoogle Scholar

  • [14] Teferle, F. N., R. M. Bingley, A. H. Dodson, N. T. Penna, and T. F. Baker (2002): "Using GPS to separate crustal movements andsea level changes at tide gauges in the UK", in Vertical Reference Systems, edited by H. Drewes, et al., pp. 264-269, Springer-Verlag, Heidelberg Berlin. Google Scholar

  • [15] Teferle, F. N., R. M. Bingley, S. D. P. Williams, T. F. Baker, and A. H. Dodson (2006): "Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea level at tide gauges in the UK", Philosophical Transactions of the Royal Society, Part A, 364, 917-930, 910.1098/rsta.2006.1746. Google Scholar

  • [16] Prawirodirdjo, L., Y. Ben-Zion, and Y. Bock (2006): "Observation and modeling of thermoelasticstrain in Southern California Integrated GPS Network daily position time series", Journal of Geophysical Research, 111, 10.1029/2005JB003716. Google Scholar

  • [17] Menke, W. (1984): "Geophysical Data Analysis, Discrete Inverse Theory". Elsevier, New York. Google Scholar

  • [18] Van Trees HL. (1968): "Detection; Estimation and Modulation Theory", Part 1. Wiley: New York, 1968. Google Scholar

  • [19] Shen Y., Li W., Xu G., Li B.(2013): "Spatiotemporal filtering of regional GNSS network’s position time serieswith missing data using principle component analysis." Journal of Geodesy vol 88, pp. 351–360, DOI 10.1007/s00190-013-0663-y, Springer-Verlag, Heidelberg Berlin. CrossrefGoogle Scholar

  • [20] Márquez-Azúa, B., and C. DeMets (2003): "Crustal velocity field of Mexico from continuous GPS measurements". 1993 to June 2001: Implications for the neotectonics of Mexico, J. Geophys. Res., 108(B9), 2450, DOI:10.1029/2002JB002241. CrossrefGoogle Scholar

  • [21] Altamimi Z., Collilieux X. and Metivier L. (2011): "ITRF2008: an improved solution of the International Terrestrial Reference Frame". Journal of Geodesy, vol. 85, issue 8, pp. 457-473, DOI: 10.1007/s00190-011-0444-4. Published: 2011. Web of ScienceCrossrefGoogle Scholar

  • [22] Dach, R., Hugentobler, U., Fridez, S. and Meindl, M. (eds.): (2007): "Bernese GPS software version 5.0". Astonomical Institute, the University of Bern. Google Scholar

  • [23] Szafranek K., Bogusz J., Figurski M. (2013): "GNSS reference solution for permanent station stability monitoring and geodynamical investigations: the ASG-EUPOS case study". Acta Geodynamica et Geomaterialia v. 10, No. 1(169), DOI: 10.13168/AGG.2013.0006, 2013 pp. 67-75. CrossrefGoogle Scholar

  • [24] Bogusz J., Figurski M. (2014): „Annual signals observed in regional GPS networks". Acta Geodynamica et Geomaterialia vol. 11 No. 2(174), 2014, pp. 1-7, DOI: 10.13168/AGG.2014.0003. CrossrefWeb of ScienceGoogle Scholar

  • [25] Mosteller F. and Tukey J. (1977): "Data Analysis and Regression". Upper Saddle River, NJ: Addison-Wesley. Google Scholar

  • [26] Sachs L. (1984): "Applied Statistics: A Handbook of Techniques". New York: Springer-Verlag, pp. 253. Google Scholar

  • [27] Klos A., Bogusz J., Figurski M., Kosek W. (2014b): „On the handling of outliers in the GNSS time series by means of the noise and probability analysis". Accepted for publication in the International Association of Geodesy Symposia, proceedings of the IAG Scientific Assembly 2014. Google Scholar

  • [28] Rodionov S. (2004): "A sequential algorithm for testing climate regime shifts". Geophysical Research Letters, vol. 31, L09204, DOI: 10.1029/2004GL019448, 2004. CrossrefGoogle Scholar

  • [29] Rodionov S. and Overland J.E. (2005): "Application of a sequential regime shift detection method to the Bering Sea ecosystem". ICES Journal of Marine Science, 62, pp. 328-332, DOI: 10.1016/j.icesjms.2005.01.013. CrossrefGoogle Scholar

  • [30] Wessel P., SmithW. H. F., Scharroo R., Luis J. F., Wobbe F. (2013): "GenericMapping Tools: Improved version released", EOS Trans. AGU, 94, pp. 409-410, 2013. Google Scholar

About the article

Received: 2014-04-17

Accepted: 2014-11-14

Published Online: 2015-04-16


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0021.

Export Citation

©2015 J. Bogusz et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. R. Amiri-Simkooei, T. H. Mohammadloo, and D. F. Argus
Journal of Geodesy, 2017, Volume 91, Number 6, Page 685
[2]
Xiaoxing He, Jean-Philippe Montillet, Rui Fernandes, Machiel Bos, Kegen Yu, Xianghong Hua, and Weiping Jiang
Journal of Geodynamics, 2017, Volume 106, Page 12
[3]
Maciej Gruszczynski
Acta Geodynamica et Geomaterialia, 2016, Page 291
[4]
Anna Klos, Janusz Bogusz, Mariusz Figurski, and Maciej Gruszczynski
Studia Geophysica et Geodaetica, 2016, Volume 60, Number 1, Page 17
[5]
Janusz Bogusz and Anna Klos
GPS Solutions, 2016, Volume 20, Number 4, Page 655

Comments (0)

Please log in or register to comment.
Log in