Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753

Open Access
See all formats and pricing
In This Section

Geochemistry and geochronology of the volcano-plutonic rocks associated with the Glojeh epithermal gold mineralization, NW Iran

Majid Ghasemi Siani
  • Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
/ Behzad Mehrabi
  • Department of Geochemistry, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
/ Hossein Azizi
  • Mining Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
/ Camilla Maya Wilkinson
  • Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway
/ Morgan Ganerød
  • Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway
Published Online: 2015-08-14 | DOI: https://doi.org/10.1515/geo-2015-0024


Eocene to Oligocene volcano-plutonic rocks are widespread throughout NW Iran. The Tarom-Hashtjin metallogenic province is one of the most promising epithermal-porphyry ore mineralized districts in NW Iran. The Glojeh gold deposit, located in the center of this province, is a typical high to intermediate sulfidation epithermal system, spatially and temporally associated with a granite intrusion and associated high-K calc-alkaline to shoshonitic volcano-plutonic rocks. The intrusive complexes of the Glojeh district are characterized by: SiO2 contents of 60.9 to 70.7 wt.%, K2O+Na2O of 7.60 to 8.92 wt.%, and K2O/Na2O ratios of 0.9 to 1.8. They are enriched in light rare earth elements (LREEs), and large ion lithophile elements (LILEs), depleted in high field strength elements (HFSEs), and have weak negative Eu anomalies (Eu/Eu*= 0.5 to 0.9). 40Ar/39Ar geochronology applied to biotite and feldspar, separated from two intrusives (Goljin and Varmarziar), and two feldspar aliquots separated from hydrothermal veins at North Glojeh and South Glojeh, was carried out to constrain magmatic and hydrothermal events. Plagioclase (± sericite), from North Glojeh and South Glojeh produced ages (42.20±0.34 Ma, and 42.56±1.47 Ma respectively) that overlap with the age of the Goljin intrusion (41.87±1.58 Ma). Geochemical data for the volcano-plutonic rocks in the Glojeh district, that have87Sr/86Sr isotopic compositions that range from 0.706344 to 0.708331, suggest an origin involving partial melting of a depleted mantle source during Neo-Tethyan subduction.

Keywords: Glojeh gold district; Volcano-plutonic rocks; Tarom-Hashtjin metallogenic province; Sr isotope; Partial melting; Geochronology


  • [1] Azizi H., Jahangiri A., Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geodyn, 2008, 45, 178-190. [Crossref]

  • [2] Jankovic S., The copper deposits and geotectonic setting of the Tethyan Eurasian Metallogenic Belt. Miner. Dep, 1977a, 12, 37-47. [Crossref]

  • [3] Jankovic S., Major Alpine ore deposits and metallogenic units in the northeastern Mediterranean and concepts of plate tectonics. In: Jankovic S., (Ed.), Metallogeny and Plate Tectonics in the Northeastern Mediterranean. Faculty of Mining Geology, Belgrade University, 1977b, 105-171.

  • [4] Ciobanu CL., Cook NJ., Stein H., Regional setting and Re–Os age of ores at Ocna de Fier Dognecea (Romania) in the context of the banatitic magmatic and metallogenic belt. Miner. Dep, 2002, 37, 541-567. [Crossref]

  • [5] Azizi H., Moinevaziri H., Petrology of Cretaceous volcanic rocks in northern Sanandaj. Tehran Uni. J. Sci, 2008, 35, 15–23.

  • [6] Blourian GH., Petrology of Tertairy volcanic rocks in the north of Tehran. MS Thesis, Kharazmi University, Tehran, Iran, 1994, (in Persian).

  • [7] Moayyed M., Investigation of Tertiary volcano-plutonic bodies in west Alborz-Azarbayejan (Hashtjin area). PhD Thesis, Shahid Beheshti University, Iran, 2001, (in Persian).

  • [8] Moayyed M., Geochemistry and petrology of volcano-plutonic bodies in Tarom area.MS Thesis, Tabriz University, Iran, 1991, (in Persian).

  • [9] Hajalilo B., Tertiary metallogeny of Alborz-Azarbayejan (Hashtjin area). PhD Thesis, Shahid Beheshti University, Iran, 1999, (in Persian).

  • [10] Ghasemi Siani M., Timing and origin of epithermal veins and geochemical zoning in the Glojeh district (North of Zanjan). PhD Thesis, Kharazmi University, Iran, 2014, (in Persian).

  • [11] Gansser A., The Geodynamic History of the Himalaya, in Zagros, Hindu Kush. In: Gupta HK., Delany FM., (Eds.), Himalaya- Geodynamic Evolution. Geodynamic Series, 3 American Geophysical Union, 1981, 111-121.

  • [12] Stocklin J., Nabavi MH., 1/2,500,000 sheet, tectonicmap of Iran. GSI, Iran, 1973.

  • [13] Şengör AMC., The Cimmeride orogenic system and the tectonics of Eurasia. Geol. Soc. Am. Spec. Paper, 1984, 82, 195-212.

  • [14] Sengör AMC., Natalin BA., Palaeotectonics of Asia: fragments of a synthesis. In: Yin A., Harrison M., (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, 1996, 443-486.

  • [15] Falcon NL., The geology of the northeast margin of the Arabian basement. Adv. Sci, 1967, 24 (119), 31-42.

  • [16] Stocklin J., Structural history and tectonic of Iran; a review. Am. Assoc. Petroleum Geologists Bull, 1968, 52, 1229-1258.

  • [17] Dewey JF., Pitman WC., Ryan WBF., Bonnin J., Plate tectonics and the evolution of the Alpine System. GSA Bull, 1973, 84 (10), 3137- 3180.

  • [18] Jackson JA., McKenzi, D., Active tectonics of the Alpine- Himalayan belt between western Turkey and Pakistan. Geophys. J. Roy. Astron. Soc, 1984, C77, 185-264.

  • [19] Byrne DE., Sykes LR., Davis DM., Great thrust earthquakes and a seismic slip along the plate boundary of the Makran subduction zone. J. Geophys. Res, 1992, 97, 449-478.

  • [20] Golonka J., Geodynamic evolution of the south Caspian Basin. Paper presented in AAPG’s Inaugural Regional International Conference, Istanbul, Turkey, 9–12 July, 2000a.

  • [21] Stampfli GM., Tethyan oceans: Geol. Soc. Lond. Spec. Publ, 2000, 173, 1-23.

  • [22] McCall GJH., A summary of the geology of the Iranian Makran. Geol. Soc. Lond. Spec. Publ, 2002, 195, 147-204.

  • [23] Allen MB., Ghassemi MR., Shahrabi M., Qorashi M., Accommodation of late Cenozoic shortening in the Alborz range, northern Iran. J. Struct. Geol, 2003, 25, 659-672. [Crossref]

  • [24] Blanc EJ., Allen MB., Inger S., Hassani H., Structural styles in the Zagros Simple Folded Zone, Iran. J. Geol. Soc, 2003, 160, 401- 412.

  • [25] Golonka J., Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 2004, 381, 235-273.

  • [26] Walker R., Jackson J., Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 2004, 23, doi: 10.1029/2003TC001529, TC5010. [Crossref]

  • [27] Alavi M., Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. Am. J. Sci, 2004, 304, 1-20.

  • [28] Verdel C., Wernicke BP., Hassanzadeh J., Guest B., A Paleogene extensional arc flare-up in Iran. Tectonics, 2011, 30, doi: 10.1029/2010TC002809, TC3008. [Crossref]

  • [29] Stocklin J., Possible ancient continental margins in Iran. In: Burk CA., Drake CL., (Eds.), The Geology of Continental Margins. Springer-Verlag, Berlin, Germany, 1974, 873-887.

  • [30] Sengör AMC., Cin A., Rowley DB., Nie SY., Space-time patterns of magmatism along the Tethysides: a preliminary study. J. Geol, 1993, 101, 51-84. [Crossref]

  • [31] Zanchi A., Berra F., Mattei M., Ghassemi MR., Sabouri J., Inversion tectonics in central Alborz, Iran. J. Struct. Geol, 2006, 28, 2023-2037. [Crossref]

  • [32] Mehrabi B., Ghasemi Siani M., Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran. Geol. Soc. India, 2012, 80, 563- 578. [Crossref]

  • [33] Azizi H., Moinevaziri H., Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. J. Geodyn, 2009, 47, 167-179. [Crossref]

  • [34] Hezarkhani A., Williams-Jones AE., Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Econ. Geol, 1998, 93, 651-670.

  • [35] Aghazadeh M., Castro A., Badrzadeh Z., Vogt K., Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran. Geological Magazine, 2011, 148, 980-1008.

  • [36] Nabatian G., Gaderi M., Neubauer F., Honarmand M., Liu X., Dong Y., et al., Petrogenesis of Tarom high-potassic granitoids in the Alborz-Azarbaijan belt, Iran. Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos, 2014, 184-187, 324-345.

  • [37] Mokhtari MAA., Moinvaziri H., Ghorbani MR., Mehrpartou M., Petrology and petrogenesis of Kamtal intrusion, Eastern Azarbaijan, NW Iran. CEJG, 2010, 53, 79-96.

  • [38] Geological map of Hashtjin. N 5664. GSI, Iran, 1995.

  • [39] Meheut M., Lazzeri M., Bala, E., Mauri F., Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochim. Cosmochim. Acta, 2007, 71, 3170-3181. [Crossref]

  • [40] Verati C., Jourdan F., Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers: implication for dating basaltic rocks and mineral deposits. 2013, 154-174. In: Jourdan F.,Mark DF., Verati C., (eds), Advances in 40Ar/39Ar Dating: from Archaeology to Planetary Sciences. Geol. Soc. London. Spec. Publ., 2014, 378, 155-174.

  • [41] McDougall I., Harrison TM., Geochronology and thermochronology by the 40Ar/39Ar method.Oxford University Press,NewYork, 1999.

  • [42] Renne PR., Mundil R., Balco G., Min KW., Ludwig KR., Joint determination of K-40 decay constants and Ar-40*/K-40 for the Fish Canyon sanidine standard, and improved accuracy for Ar- 40/Ar-39 geochronology. Geochim.Cosmochim.Acta, 2010, 74 (18), 5349-5367. [Crossref]

  • [43] Lee JY., Marti K., Severinghaus JP., Kawamura K., Yoo HS., Lee JB., Kim JS., A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta, 2006, 70 (17), 4507- 4512. [Crossref]

  • [44] Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara, M., et al., A neodymiumisotopic reference in consistency with LaJolla neodymium. Chem. Geol, 2000, 168, 279-281.

  • [45] LeBas MJ., LeMaitre RW., Streckeisen A., Zanettin B., A chemical classification of volcanic rocks based on the total alkali silica diagram. J. Petrol, 1986, 27, 745-750. [Crossref]

  • [46] Peccerillo A., Taylor SR., Geochemistry of Eocene calc alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol, 1976, 58, 63-81.

  • [47] Irvine TN., Bargara WRA., A guide to the Chemical classification of the common volcanic rocks. Can. J. Earth. Sci, 1971, 8, 523-548.

  • [48] Collins WJ., Beams SD., White AJR., Chappell BW., Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol, 1982, 80, 189-200. [Crossref]

  • [49] Xu JF., Castillo PR., Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 2004, 393, 9-27.

  • [50] Tribuzio R., Thirlwall MF., Vannucci R., Matthew F., Origin of the gabbro peridotiteassociation from the Northern Apennine Ophiolites (Italy). J. Petrol, 2004, 45, 1109–1124. [Crossref]

  • [51] Nakamura N., Determination of REE, Ba, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 1974, 38, 757-775. [Crossref]

  • [52] Muller D., Rock NMS., Groves DI., Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting: a pilot study. Miner. Petrol, 1992, 46, 259-286. [Crossref]

  • [53] Condie KC., Geochemical changes in basalts and andesites across the Archean–Proterozoic boundary: identification and significance. Lithos, 1989, 23, 1-18. [Crossref]

  • [54] Müller D., Groves DI., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Springer-Verlag, Berlin, 1995.

  • [55] Turner S., Arnaud N., Liu J., Rogers N., Hawkesworth C., Harris N., et al., Post-collision shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol, 1996, 37, 45-71.

  • [56] Lafleche Mr., Dupuy C., Dosta J., Archaean orogenic ultrapotassic magmatism: an example from the Southern Abitibi Greenstone Belt. Precambr Res, 1991, 52, 71-96.

  • [57] Jiang YH., Jiang SY., Ling HF., Zhou XR., Rui XJ., Yang WZ., Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid genesis. Lithos, 2002, 63, 165-187. [Crossref]

  • [58] Wang Q., Xu JF., Jian P., Bao ZW., Zhao ZH., Li CF., Xiong XL., Ma JL., Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos, 2006, 89, 424-446.

  • [59] Duchesne JC., Berza T., Liégeois JP., Vander Auwera J., Shoshonitic liquid line of descent from diorite to granite: the Late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos, 1998, 45, 281-303. [Crossref]

  • [60] López-Moro FJ., López-Plaza M., Monzonitic series from the VariscanTormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos, 2004, 72, 19-44. [Crossref]

  • [61] Fu B., Ren Q., Xing F., Xu Z., Zheng Y., 40Ar–39Ar dating of copper (gold)-bearing porphyry in Shaxi, Anhui province and its geological significance. J. Geol, 1997, 43, 310-316.

  • [62] Xing FM., Xu X., The Yangtze Magmatic Zone and Mineralization in Anhui Province. Anhui People Press, Heifei, 1999.

  • [63] Foley S., Peccerillo A., Potassic and ultrapotassic magmas and their origin. Lithos, 1992, 28, 181-185. [Crossref]

  • [64] Pearce JA., Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe, R.S. (Ed.): Andesites. Wiley, New York, 1982, 525-548.

  • [65] Doyon M., Berger J., Distribution et contrôles structuraux des roches magmatiques Siluro–Dévoniennes de la Gaspésie. Ministère des Ressources Naturelles du Québec, 1997, 97, 1-31.

  • [66] Thirlwall MF., Upton BGJ., Jenkins C., Interaction between continental lithosphere and the Iceland plume Sr-Nd-Pb isotope geochemistry of Tertiary basalts, NE Greenland, J. Petrol, 1994, 35, 839-879. [Crossref]

  • [67] López-Moro FJ., López-Plaza M., Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos 2004, 72, 19-44. [Crossref]

  • [68] Bradshaw TK., Smith EI., Polygenetic Quaternary volcanism at Crater Flat, Nevada. JVGR, 1994, 63, 165-182.

  • [69] Smith EI., Sánchez A., Walker JD., Wang K., Geochemistry of mafic magmas in the Hurricane volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. J. Geol, 1999, 107, 433-448.

About the article

Received: 2014-08-06

Accepted: 2015-01-05

Published Online: 2015-08-14

Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0024. Export Citation

©2015 Majid Ghasemi Siani et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in