Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2016 (Open Geosciences): 0.475
IMPACT FACTOR 2016 (Central European Journal of Geosciences): 1.071

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2015: 0.349
Source Normalized Impact per Paper (SNIP) 2015: 0.753

Open Access
See all formats and pricing
In This Section

Variability of sulfur speciation in sediments from Sulejów, Turawa and Siemianówka dam reservoirs (Poland)

Wojciech Drzewicki
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
/ Monika Ciężka
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
/ Piotr Jezierski
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
/ Mariusz Orion Jędrysek
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
Published Online: 2015-06-29 | DOI: https://doi.org/10.1515/geo-2015-0027


A study on sulfur circulation in sediments was carried out in dam reservoirs (Sulejów, Siemianówka, Turawa) with different hydrological and age characteristics as well as with a different level of sediment accumulation and organic matter content. Differences in the isotopic composition of SO2−4 in the water column and small variations in the concentration of this ion were observed in the Turawa reservoir. The investigations did not show vertical variation in the watercolumn concentrations and isotopic composition. This is due to the small depths of the reservoir and mixing of water. A part of sulfate sulfur from the water column is reduced by incorporating it into cell structures, while a part of it is deposited in the sediment. The study revealed a small exchange of SO2−4 between thewater column and the sediment. Depending on the season of the year and the sediment sampling site, biogeochemical transformations of sulfur species are observed. A significant variation in the biogeochemical processes was found between the Siemianówka and Sulejów reservoirs, both in the concentrations and in the isotopic composition of particular sulfur species. This primarily results from the different characteristics of either of these reservoirs (flows, sedimentation, and material discharge to the lake). The main source of sulfur supplied to the sediments in the Siemianówka reservoir is organic sulfur contained in organic matter deposited at the bottom. In the sediment, organic sulfur is bacterially oxidized and fixed as SO2−4 . This is manifested in a substantial enrichment of sulfate in 34S. The presence of polysulfides was found in both reservoirs, but a distinct depletion of δ34S(S2−) in the light sulfur isotope was observed in the Siemianówka reservoir. In a part of the Sulejów reservoir, polysulfides are oxidized to SO2−4 ,probably at the sediment/water interface.

Keywords: sulfur biogeochemical cycle; speciation of sulfur; sulfur isotopes; freshwater sediments


  • [1] David M.B., Mitchell M.J., Sulfur constituents and cycling in waters, seston, and sediments of an oligotrophic lake. Limnol. Oceanogr., 1985, 30, 1196–1207. [Crossref]

  • [2] Herlihy A.T., Mills A.L., Herman J.S., Distribution of reduced inorganic sulfur compounds in lake sediments receiving acid mine drainage. Appl. Geochem., 1988, 3, 333–344. [Crossref]

  • [3] Peiffer S., Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes. Water Air Soil Poll., 1988, 108, 227–229.

  • [4] Cook R.B., Kelly C.A., Sulphur cycling and uxes in temperate dimictic lakes. Sulphur Cycling on the Continents. In: Scope, R.W. Howarth, J.W.B. Stewart, M.V. Ivanov (Eds.), John Wiley & Sons Ltd., Washington, 1992, 145–188.

  • [5] Dornblaser M., Giblin A.E., Fry B., Peterson B.J., Effects of sulfate concentration in the overlying water on sulfate reduction and sulfur storage in lake sediments. Biogeochemistry, 1992, 24, 129–144.

  • [6] Mitchell M.J., Owen J.S., Schindler S.C., Factors affecting sulfur incorporation into lake sediments: paleoecological implications. J. Paleolimnol., 1990, 4, 1–22. [Crossref]

  • [7] Holmer M., Storkholm P., Sulphate reduction and sulphur cycling In lake sediments: a review. Freshwater Biol., 2001, 46, 431–451. [Crossref]

  • [8] Jorgensen B.B., The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr., 1977, 22, 814–832. [Crossref]

  • [9] Berner R.A., Westrich J.T., Bioturbation and the early diagenesis of carbon and sulfur. Am. J. Sci., 1985, 285, 193–206.

  • [10] Rudd J.W.M., Kelly C.A., Furutani A., The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr., 1986, 31, 1281–1291. [Crossref]

  • [11] Bak F., Pfennig N., Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol., 1991, 85, 31–42. [Crossref]

  • [12] Jorgensen B.B., Ecology of the sulphur cycle: oxidative pathways in the sediment. In: The Nitrogen and Sulphur Cycles J.A. Cole, S.J. Ferguson (Eds.), Cambridge University Press, Cambridge, 1988, 31–63.

  • [13] Clark I.D., Fritz P., Environmental Isotopes in Hydrogeology, Lewis Publishers, New York, 1997, 138–148.

  • [14] Jedrysek M.O., Skład izotopowy SO2− 4 i CH4 jako nowy ilosciowy wskaznik antropopresji, degradacji i trofii srodowisk jeziornych: model wstepny. Zagrozenia degradacyjne a ochrona jezior [The isotopic composition of SO2− 4 end CH4 as a new quantitative indicator of anthropogenic stress, degradation and lake trophic environments: a preliminary model; Threats degradation and protection of lakes], Bad. Limnol. I wyd. Zakład Limnologii Uniwersytetu Gdanskiego, 1998 (In Polish).

  • [15] Jedrysek M., O., S–O–C isotopic picture of sulphate–methane– carbonate system in freshwater lakes from Poland. A review, Environ. Chem. Lett., 2005, 100–112. [Crossref]

  • [16] Krouse H.R., Grinienko V.A., Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment, SCOPE, Wiley and Sons, 1991, 43.

  • [17] Kendall C., McDonnell J.J., Isotopes Tracers in Catchment Hydrology, Elsevier Science B.V., Amsterdam – Lausanne – New York – Oxford – Shannon – Singapore – Tokyo, 1998, 489–508.

  • [18] Jedrysek M.O., Kałuzny A., Hoefs J., S and O isotope ratios in spruce needles as a tracer of atmospheric pollution., J. Geophys. Res. D, 2002, 107, 4353–4365. [Crossref]

  • [19] Cortecci G., Dinelli E., Bencini A., Adorni-Braccesi A., La Ruffa G., Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl. Geochem., 2002, 17, 79–92. [Crossref]

  • [20] Mandernack K.W., Lynch L., Krouse H.R., Morgan M.D., Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry, Geochim. Cosmochim. Acta, 2002, 64, 3949–3964. [Crossref]

  • [21] Schiff S.L., Spoelstra J., Semkin R.G., Jeffries D.S., Drought induced pulses of SO2− 4 from a Canadian shield wetland: use of δ34S and δ18O in SO2− 4 to determine sources of sulfur. Appl. Geochem., 2005, 20, 691–700. [Crossref]

  • [22] Dogramaci S.S., Herczeg A.L., Schiff S.L., Bone Y., Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes, Appl. Geochem., 2001, 16, 475–488. [Crossref]

  • [23] Moncaster S.J., Bottrell S.H., Tellam J.H., Lloyd J.W., Konhauser K.O., Migration and attenuation of agrochemical pollutants: insight from isotopic analysis of groundwater sulphate, J. Contam. Hydrol., 2000, 43, 147–163. [Crossref]

  • [24] Szynkiewicz A., Witcher J.C., Modelska M., Borrok D.M., Pratt L.M., Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA), Chem. Geol., 2011, 283, 194–209. [Web of Science]

  • [25] Ruman M., Uwarunkowania i skutki zmian własnosci fizykochemicznych wód zbiornika Turawskiego [Conditions and effects of changes in the physico- chemical dam Turawskie], Uniwersytet Slaski Katowice, 2011.

  • [26] Tarczynska M., Przyczyny powstawania toksycznych zakwitów sinicowych w Zbiorniku Sulejowskim i ich wpływ na ekosystem wodny [The causes of toxic cyanobacterial blooms in the Tank Sulejowski and their impact on the aquatic ecosystem. PhD thesis], University of Lódz, 1997.

  • [27] Ambrozewski Z., Monograph of Sulejow reservoir. WKiL Warszawa 1980 (In Polish).

  • [28] Górniak A., Jekaterczuk 2006. Ekosytem zbiornika Siemianówka w latach 1990-2004 i jego rekultywacja [Ekosytem Siemianówka reservoir in 1990-2004 and its reclamation]. Zakład Hydrobiologii Uniwersytet w Białymstoku, 2006, (In Polish).

  • [29] Suchowolec T., Morfologia i zagadnienia techniczne zbiornika Siemianówka. Ekosystem zbiornika Siemianówkawlatach 1990 – 2004 i jego rekultywacja [Morphology and technical issues Siemianówka dam. Ecosystem dam Siemianówka years 1990 - 2004 and its reclamation]. Zakład Hydrobiologii, Uniwersytet w Białymstoku, Białystok, 2006 (In Polish).

  • [30] Håkanson L., Jansson M., Principles of lake sedimentology, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 316.

  • [31] Bates A.L., Spiker E.C., OremW.H., BurnettW.C., Speciation and isotopic composition of surfur in sediments from Jellyfish lake, Palau. Chem. Geol., 1993, 106, 63–76. [Crossref]

  • [32] Hall G.E.M., Pelchat J.-C., Loop J., Separation and recovery of various sulphur species in sedimentary rocks for stable sulphur isotopic determination. Chem. Geol., 1988, 35–45.

  • [33] Rice C.A., Tuttle M.L., Reynolds R.L., The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions. Chem. Geol., 1993, 107, 83–95. [Crossref]

  • [34] Zhabina N.N., Volkov I.I., A method of determination of various sulfur compounds in sea sediments and rocks. In: Environmental Biogeochemistry; Methods, Metals and Assessment, W.E. Krumbein (Ed.), Ann Arbor Scientific Publications, 1978, 3, 735– 745.

  • [35] Zaback D.A., Pratt L.M., Isotopic composition and speciation of sulfur in the Miocene Monterey Formation; reevaluacion of sulfur reactions during early diagenesis in marine environments. Geochim. Cosmochim. Acta, 1992, 56, 763–774. [Crossref]

  • [36] Drzewicki W., The causes of variation of the isotopic composition of sulfur in sediments and in the water Sulejowski reservoir (in Polish), PhD Thesis, 2004, Wrocław University (2004).

  • [37] DuanW.M., Coleman M.L., Pye K., Determination of reduced sulphur species in sediments – an evaluaction and modified technique. Chem. Geol., 1997b, 141, 185–194.

  • [38] Wieder R.K., Lang G.E., Granus V.A., An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat. Limnol. Oceanogr., 1985, 30, 1109–1115. [Crossref]

  • [39] Siegfieldt R.K., Wiberley J.S., Moore R.W., Determination of sulfur after combustion in a small oxygen bomb. Rapid titrometric method. Anal. Chem., 1951, 23, 1008–1011. [Crossref]

  • [40] Tuttle M.L., Goldhaber M.B., Williamson D.L., An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta, 1986, 33, 953–961. [Crossref]

  • [41] Yanagisawa F., Sakai H., Preparation of SO2 for sulfur isotope ratio measurements by the thermal decomposition ofBaSO4– V2O5–SiO2 mixtures, Anal. Chem., 1983, 55, 985–987. [Crossref]

  • [42] Mizutani Y., Oana S., Separation of CO2 from SO2 with frozen n-pentane as a technique for the precision analysis of 18O in sulfates. Mass Spectroscopy, 1973, 21, 255–257.

  • [43] Lewicka-Szczebak D., Trojanowska A., Drzewicki W., Górka M., Jedrysek M.O., Jezierski P., Kurasiewicz M., Krajniak J., Sources and sinks of sulphate dissolved in lake water of a dam reservoir: S and O isotopic approach. Appl. Geochem., 2009, 24(10), 1941–1950. [Crossref] [Web of Science]

  • [44] Davisom W., Lishman J.P., Hilton J., Formation of pyrite in freshwater sediments: Implication for C/S ratios. Geochim. Cosmochim. Acta, 1985, 49, 1615–1620. [Crossref]

  • [45] Rickard D., Kinetics of pyrite formation by the H2S oxidation of Fe(II) monosulfide in aqueous solutions between 25°C and 125°C: the rate equation. Geochim. Cosmochim. Acta, 1997, 61, 115–134.

About the article

Received: 2014-07-26

Accepted: 2015-01-22

Published Online: 2015-06-29

Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0027. Export Citation

©2015 W. Drzewicki et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in