Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Variability of sulfur speciation in sediments from Sulejów, Turawa and Siemianówka dam reservoirs (Poland)

Wojciech Drzewicki
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Ciężka
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Jezierski
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Orion Jędrysek
  • Laboratory of Isotope Geology and Geoecology, Department of Applied Geology and Geochemistry, Institute of Geological Sciences, University of Wrocław, ul. Cybulskiego 30, 50-205 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-29 | DOI: https://doi.org/10.1515/geo-2015-0027

Abstract

A study on sulfur circulation in sediments was carried out in dam reservoirs (Sulejów, Siemianówka, Turawa) with different hydrological and age characteristics as well as with a different level of sediment accumulation and organic matter content. Differences in the isotopic composition of SO2−4 in the water column and small variations in the concentration of this ion were observed in the Turawa reservoir. The investigations did not show vertical variation in the watercolumn concentrations and isotopic composition. This is due to the small depths of the reservoir and mixing of water. A part of sulfate sulfur from the water column is reduced by incorporating it into cell structures, while a part of it is deposited in the sediment. The study revealed a small exchange of SO2−4 between thewater column and the sediment. Depending on the season of the year and the sediment sampling site, biogeochemical transformations of sulfur species are observed. A significant variation in the biogeochemical processes was found between the Siemianówka and Sulejów reservoirs, both in the concentrations and in the isotopic composition of particular sulfur species. This primarily results from the different characteristics of either of these reservoirs (flows, sedimentation, and material discharge to the lake). The main source of sulfur supplied to the sediments in the Siemianówka reservoir is organic sulfur contained in organic matter deposited at the bottom. In the sediment, organic sulfur is bacterially oxidized and fixed as SO2−4 . This is manifested in a substantial enrichment of sulfate in 34S. The presence of polysulfides was found in both reservoirs, but a distinct depletion of δ34S(S2−) in the light sulfur isotope was observed in the Siemianówka reservoir. In a part of the Sulejów reservoir, polysulfides are oxidized to SO2−4 ,probably at the sediment/water interface.

Keywords: sulfur biogeochemical cycle; speciation of sulfur; sulfur isotopes; freshwater sediments

References

  • [1] David M.B., Mitchell M.J., Sulfur constituents and cycling in waters, seston, and sediments of an oligotrophic lake. Limnol. Oceanogr., 1985, 30, 1196–1207. CrossrefGoogle Scholar

  • [2] Herlihy A.T., Mills A.L., Herman J.S., Distribution of reduced inorganic sulfur compounds in lake sediments receiving acid mine drainage. Appl. Geochem., 1988, 3, 333–344. CrossrefGoogle Scholar

  • [3] Peiffer S., Geochemical and microbial processes in sediments and at the sediment-water interface of acidic mining lakes. Water Air Soil Poll., 1988, 108, 227–229. Google Scholar

  • [4] Cook R.B., Kelly C.A., Sulphur cycling and uxes in temperate dimictic lakes. Sulphur Cycling on the Continents. In: Scope, R.W. Howarth, J.W.B. Stewart, M.V. Ivanov (Eds.), John Wiley & Sons Ltd., Washington, 1992, 145–188. Google Scholar

  • [5] Dornblaser M., Giblin A.E., Fry B., Peterson B.J., Effects of sulfate concentration in the overlying water on sulfate reduction and sulfur storage in lake sediments. Biogeochemistry, 1992, 24, 129–144. Google Scholar

  • [6] Mitchell M.J., Owen J.S., Schindler S.C., Factors affecting sulfur incorporation into lake sediments: paleoecological implications. J. Paleolimnol., 1990, 4, 1–22. CrossrefGoogle Scholar

  • [7] Holmer M., Storkholm P., Sulphate reduction and sulphur cycling In lake sediments: a review. Freshwater Biol., 2001, 46, 431–451. CrossrefGoogle Scholar

  • [8] Jorgensen B.B., The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr., 1977, 22, 814–832. CrossrefGoogle Scholar

  • [9] Berner R.A., Westrich J.T., Bioturbation and the early diagenesis of carbon and sulfur. Am. J. Sci., 1985, 285, 193–206. Google Scholar

  • [10] Rudd J.W.M., Kelly C.A., Furutani A., The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr., 1986, 31, 1281–1291. CrossrefGoogle Scholar

  • [11] Bak F., Pfennig N., Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol., 1991, 85, 31–42. CrossrefGoogle Scholar

  • [12] Jorgensen B.B., Ecology of the sulphur cycle: oxidative pathways in the sediment. In: The Nitrogen and Sulphur Cycles J.A. Cole, S.J. Ferguson (Eds.), Cambridge University Press, Cambridge, 1988, 31–63. Google Scholar

  • [13] Clark I.D., Fritz P., Environmental Isotopes in Hydrogeology, Lewis Publishers, New York, 1997, 138–148. Google Scholar

  • [14] Jedrysek M.O., Skład izotopowy SO2− 4 i CH4 jako nowy ilosciowy wskaznik antropopresji, degradacji i trofii srodowisk jeziornych: model wstepny. Zagrozenia degradacyjne a ochrona jezior [The isotopic composition of SO2− 4 end CH4 as a new quantitative indicator of anthropogenic stress, degradation and lake trophic environments: a preliminary model; Threats degradation and protection of lakes], Bad. Limnol. I wyd. Zakład Limnologii Uniwersytetu Gdanskiego, 1998 (In Polish). Google Scholar

  • [15] Jedrysek M., O., S–O–C isotopic picture of sulphate–methane– carbonate system in freshwater lakes from Poland. A review, Environ. Chem. Lett., 2005, 100–112. CrossrefGoogle Scholar

  • [16] Krouse H.R., Grinienko V.A., Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment, SCOPE, Wiley and Sons, 1991, 43. Google Scholar

  • [17] Kendall C., McDonnell J.J., Isotopes Tracers in Catchment Hydrology, Elsevier Science B.V., Amsterdam – Lausanne – New York – Oxford – Shannon – Singapore – Tokyo, 1998, 489–508. Google Scholar

  • [18] Jedrysek M.O., Kałuzny A., Hoefs J., S and O isotope ratios in spruce needles as a tracer of atmospheric pollution., J. Geophys. Res. D, 2002, 107, 4353–4365. CrossrefGoogle Scholar

  • [19] Cortecci G., Dinelli E., Bencini A., Adorni-Braccesi A., La Ruffa G., Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl. Geochem., 2002, 17, 79–92. CrossrefGoogle Scholar

  • [20] Mandernack K.W., Lynch L., Krouse H.R., Morgan M.D., Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry, Geochim. Cosmochim. Acta, 2002, 64, 3949–3964. CrossrefGoogle Scholar

  • [21] Schiff S.L., Spoelstra J., Semkin R.G., Jeffries D.S., Drought induced pulses of SO2− 4 from a Canadian shield wetland: use of δ34S and δ18O in SO2− 4 to determine sources of sulfur. Appl. Geochem., 2005, 20, 691–700. CrossrefGoogle Scholar

  • [22] Dogramaci S.S., Herczeg A.L., Schiff S.L., Bone Y., Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes, Appl. Geochem., 2001, 16, 475–488. CrossrefGoogle Scholar

  • [23] Moncaster S.J., Bottrell S.H., Tellam J.H., Lloyd J.W., Konhauser K.O., Migration and attenuation of agrochemical pollutants: insight from isotopic analysis of groundwater sulphate, J. Contam. Hydrol., 2000, 43, 147–163. CrossrefGoogle Scholar

  • [24] Szynkiewicz A., Witcher J.C., Modelska M., Borrok D.M., Pratt L.M., Anthropogenic sulfate loads in the Rio Grande, New Mexico (USA), Chem. Geol., 2011, 283, 194–209. Web of ScienceGoogle Scholar

  • [25] Ruman M., Uwarunkowania i skutki zmian własnosci fizykochemicznych wód zbiornika Turawskiego [Conditions and effects of changes in the physico- chemical dam Turawskie], Uniwersytet Slaski Katowice, 2011. Google Scholar

  • [26] Tarczynska M., Przyczyny powstawania toksycznych zakwitów sinicowych w Zbiorniku Sulejowskim i ich wpływ na ekosystem wodny [The causes of toxic cyanobacterial blooms in the Tank Sulejowski and their impact on the aquatic ecosystem. PhD thesis], University of Lódz, 1997. Google Scholar

  • [27] Ambrozewski Z., Monograph of Sulejow reservoir. WKiL Warszawa 1980 (In Polish). Google Scholar

  • [28] Górniak A., Jekaterczuk 2006. Ekosytem zbiornika Siemianówka w latach 1990-2004 i jego rekultywacja [Ekosytem Siemianówka reservoir in 1990-2004 and its reclamation]. Zakład Hydrobiologii Uniwersytet w Białymstoku, 2006, (In Polish). Google Scholar

  • [29] Suchowolec T., Morfologia i zagadnienia techniczne zbiornika Siemianówka. Ekosystem zbiornika Siemianówkawlatach 1990 – 2004 i jego rekultywacja [Morphology and technical issues Siemianówka dam. Ecosystem dam Siemianówka years 1990 - 2004 and its reclamation]. Zakład Hydrobiologii, Uniwersytet w Białymstoku, Białystok, 2006 (In Polish). Google Scholar

  • [30] Håkanson L., Jansson M., Principles of lake sedimentology, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 316. Google Scholar

  • [31] Bates A.L., Spiker E.C., OremW.H., BurnettW.C., Speciation and isotopic composition of surfur in sediments from Jellyfish lake, Palau. Chem. Geol., 1993, 106, 63–76. CrossrefGoogle Scholar

  • [32] Hall G.E.M., Pelchat J.-C., Loop J., Separation and recovery of various sulphur species in sedimentary rocks for stable sulphur isotopic determination. Chem. Geol., 1988, 35–45. Google Scholar

  • [33] Rice C.A., Tuttle M.L., Reynolds R.L., The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions. Chem. Geol., 1993, 107, 83–95. CrossrefGoogle Scholar

  • [34] Zhabina N.N., Volkov I.I., A method of determination of various sulfur compounds in sea sediments and rocks. In: Environmental Biogeochemistry; Methods, Metals and Assessment, W.E. Krumbein (Ed.), Ann Arbor Scientific Publications, 1978, 3, 735– 745. Google Scholar

  • [35] Zaback D.A., Pratt L.M., Isotopic composition and speciation of sulfur in the Miocene Monterey Formation; reevaluacion of sulfur reactions during early diagenesis in marine environments. Geochim. Cosmochim. Acta, 1992, 56, 763–774. CrossrefGoogle Scholar

  • [36] Drzewicki W., The causes of variation of the isotopic composition of sulfur in sediments and in the water Sulejowski reservoir (in Polish), PhD Thesis, 2004, Wrocław University (2004). Google Scholar

  • [37] DuanW.M., Coleman M.L., Pye K., Determination of reduced sulphur species in sediments – an evaluaction and modified technique. Chem. Geol., 1997b, 141, 185–194. Google Scholar

  • [38] Wieder R.K., Lang G.E., Granus V.A., An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat. Limnol. Oceanogr., 1985, 30, 1109–1115. CrossrefGoogle Scholar

  • [39] Siegfieldt R.K., Wiberley J.S., Moore R.W., Determination of sulfur after combustion in a small oxygen bomb. Rapid titrometric method. Anal. Chem., 1951, 23, 1008–1011. CrossrefGoogle Scholar

  • [40] Tuttle M.L., Goldhaber M.B., Williamson D.L., An analytical scheme for determining forms of sulphur in oil shales and associated rocks. Talanta, 1986, 33, 953–961. CrossrefGoogle Scholar

  • [41] Yanagisawa F., Sakai H., Preparation of SO2 for sulfur isotope ratio measurements by the thermal decomposition ofBaSO4– V2O5–SiO2 mixtures, Anal. Chem., 1983, 55, 985–987. CrossrefGoogle Scholar

  • [42] Mizutani Y., Oana S., Separation of CO2 from SO2 with frozen n-pentane as a technique for the precision analysis of 18O in sulfates. Mass Spectroscopy, 1973, 21, 255–257. Google Scholar

  • [43] Lewicka-Szczebak D., Trojanowska A., Drzewicki W., Górka M., Jedrysek M.O., Jezierski P., Kurasiewicz M., Krajniak J., Sources and sinks of sulphate dissolved in lake water of a dam reservoir: S and O isotopic approach. Appl. Geochem., 2009, 24(10), 1941–1950. CrossrefWeb of ScienceGoogle Scholar

  • [44] Davisom W., Lishman J.P., Hilton J., Formation of pyrite in freshwater sediments: Implication for C/S ratios. Geochim. Cosmochim. Acta, 1985, 49, 1615–1620. CrossrefGoogle Scholar

  • [45] Rickard D., Kinetics of pyrite formation by the H2S oxidation of Fe(II) monosulfide in aqueous solutions between 25°C and 125°C: the rate equation. Geochim. Cosmochim. Acta, 1997, 61, 115–134. Google Scholar

About the article

Received: 2014-07-26

Accepted: 2015-01-22

Published Online: 2015-06-29


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0027.

Export Citation

©2015 W. Drzewicki et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Efrén Castro, Iván León, and José Pinedo
Regional Studies in Marine Science, 2017

Comments (0)

Please log in or register to comment.
Log in