Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Occurrences of Chert in Jurassic-Cretaceous Calciturbidites (SW Turkey)

Murat Gül
  • Mugla Sıtkı Kocman University, Engineering Faculty, Department of Geological Engineering, 48000, Kotekli, Mugla, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-14 | DOI: https://doi.org/10.1515/geo-2015-0029

Abstract

The Lycian Nappes, containing ophiolite and sedimentary rocks sequences, crop out in the southwest Turkey. The Tavas Nappe is a part of the Lycian Nappes. It includes the Lower Jurassic-Upper Cretaceous calciturbidites. Chert occurrences were observed in the lower part of this calciturbidite. These cherts can be classified on the basis of length, internal structure and host rock. Chert bands are 3.20-35.0min length and 7.0-35.0 cm thick. Chert lenses are 5.0-175.0 cm in length and 1.0-33.0 cm thick. According to its internal structure, granular chert (bladedlarge equitant quartz minerals replaced the big calcite mineral of fossil shell) and porcelanious chert (microcrystalline silica replaced micrite) have been separated. Cherts are generally associated with calcarenite-calcirudite, the others with calcilutite. Micritic calcite patches of cherts point out an uncompleted silicification. The source of silica was dominantly quartz-rich, older, basal rocks and to a lesser extent radiolarians. The coarse-grained calciturbidites act as a way for silica transportation. Some calcite veins (formed during transportation and emplacement of nappes) cut both calciturbidites and cherts. Thus, chert occurrences evolved before emplacement of nappes (the latest Cretaceous-Late Miocene period) during the epigenetic phase.

Keywords: Chert band; Chert lens; Radiolaria; Calciturbidite; silicification

References

  • [1] Lapidus F., Winstanley I., Collins Dictionary of Geology, Collins, Glasgow, 565, 1990. Google Scholar

  • [2] Boggs S. Jr., Principles of Sedimentology and Stratigraphy, Macmillan Publishing Company, New York, USA, 771, 1987. Google Scholar

  • [3] Behl R.J., Chert spheroids of the Monterey Formation, California (USA): early-diagenetic structures of bedded siliceous deposits. Sedimentology, 2011, 58, 325–351. CrossrefGoogle Scholar

  • [4] Kunimaru T., Shimizu H., Takahashi K., Yabuki S., Differences in geochemical features between Permian and Triassic cherts from the Southern Chichibu terrane, southwest Japan: REE abundances, major element compositions and Sr isotopic ratios. Sediment. Geol., 1998, 119, 195–217. Google Scholar

  • [5] Aiello I.W., HagstrumJ.T., Paleomagnetism and paleogeography of Jurassic radiolarian cherts from the northern Apennines of Italy. Geol. Soc. Am. Bull., 2001, 113, 469–481. Google Scholar

  • [6] Baumgartner P.O., Mesozoic radiolarites–accumulation as a function of sea surface fertility on Tethyanmargins and in ocean basins. Sedimentology, 2013, 60, 292–318. Web of ScienceGoogle Scholar

  • [7] Bustillo M.A., Delgado A., Rey J., Ruiz-Ortiz P.A., Meteoric water participation in the genesis of Jurassic cherts in the subbetic of southern Spain - a significant indicator of penecontemporaneous emergence. Sediment. Geol., 1998, 119, 85–102 Google Scholar

  • [8] McBride E.F., Abdel-Wahab A., El-Younsy A.R.M., Origin of spheroidal chert nodules, Drunka Formation (Lower Eocene), Egypt. Sedim., 1999, 46, 733–755. Google Scholar

  • [9] Bustillo M.A., Arribas M.E., Bustillo M., Dolomitization and silicification in low- energy lacustrine carbonates (Paleogene, Madrid Basin, Spain). Sediment. Geol., 2002, 151, 107–126. Google Scholar

  • [10] Migaszewski Z.M., Gayuszka A., Durakiewicz T., Starnawska E., Middle Oxfordian–Lower Kimmeridgian chert nodules in the Holy Cross Mountains, south-central Poland. Sediment. Geol., 2006, 187, 11– 28. Google Scholar

  • [11] Bustillo M.A., Chapter 3: Silisification of continental carbonates. Dev. Sedimentol., 2010, 62, 153–178. Google Scholar

  • [12] Saller A., Ball B., Robertson S., McPherson B., Wene C., Nims R., Gogas J., Reservoir characteristics of Devonian cherts and their control on oil recovery: Dollarhide Field, West Texas. AAPG Bull., 2001, 85, 35–50. Google Scholar

  • [13] Murray R.W., Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment. Geol., 1994, 90, 3–4, 213–232. Google Scholar

  • [14] Murray R.W., Brink M.R.B.T., Gerlach D.C., Russ III G.P., Jones D.L., Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochim. Cosmochim. Acta, 1991, 55, 7, 1875–1895. CrossrefGoogle Scholar

  • [15] Wang J., Chen D., Wang D., Yan D., Zhou X., Wang Q., Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran– Cambrian transition. Sedim., 2012, 59, 809–829. Google Scholar

  • [16] S˛enel M., Fethiye–L7 Quadrangle, 1: 100.000 Scale Geological Map and Explanatory Text. Mineral Research and Exploration Institute of Turkey (MTA) Publications. 17, 1997. (unpublished, in Turkish) Google Scholar

  • [17] Collins A.S., Robertson A.H.F., Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J. Geol. Soc., 1998, 155, 759–772. Google Scholar

  • [18] Collins A.S., Robertson A.H.F., Evolution of the Lycian Allochthonous, western Turkey, as a north-facing Late Palaeozoic to Mesozoic rift and passive continental margin. Geol. J., 1999, 34, 107–138. Google Scholar

  • [19] S˛enel M., Characteristic features of the Lycian nappes and their evolution. Menderes Massif colloquium–Proceedings, Ankara, 51–55, 2007. (in Turkish with English Abstract) Google Scholar

  • [20] Okay A., Geology of the MenderesMassif and the Lycian nappes in the south of Denizli. Bulletin of General Directorate of Mineral Research and Exploration Institute, 1989, 109, 45–58. (in Turkish) Google Scholar

  • [21] Ersoy S˛., The analysis of evolution and structural items of the Western Taurus-Lycian Nappes. Jeoloji Mühendisligi Dergisi - J. Eng. Geol., 1990, 37, 5–16. (in Turkish with English Abstract) Google Scholar

  • [22] Gül M, Aksoy M.E., Akc˛er S. Avs˛ar Ö., Avs˛ar U., The lithological characteristics of the cherty limestone and calciturbidites of the Babadag Formation (Jurassic-Cretaceous, Tavas Nappe, Ortaca, Mugla, SW Turkey). 66. Turkish Geological Congress, Ankara, 2013, 375. (in Turkish with English Abstract) Google Scholar

  • [23] Collins A.S., Robertson A.H.F., Kinematic evidence for Late Mesozoic-Mioecene emplacement of the Lycian Allochthonous over the Western Anatolide Belt, SW Turkey. Geol. J., 2003, 38, 295–310. Google Scholar

  • [24] Folk R.L., Spectral subdivision of limestone types. In: Ham W.E. (Ed.) Classification of Carbonate Rocks. Mem. AAPG, Tulsa, Oklahoma, USA, 1962, 1, 62–64. Google Scholar

  • [25] Dunham R.J., Classification of carbonate rock according to depositional texture. In:HamW.E. (Ed.) Classification of Carbonate Rocks. Mem. AAPG, Tusla, Oklahoma, USA, 1962, 1, 108–121. Google Scholar

  • [26] Embry A.F., Klovan J.E., A Late Devonian reef tract on Northeastern Banks Island. N.W. T. Bull. Can. Petrol. Geol., 1971, 19, 730– 781. Google Scholar

  • [27] Sarı B., Özer S., Upper Cretaceous stratigraphy of the Beydagları Carbonate Platform, Korkuteli Area (Western Taurides). Turskish J. Earth Sci., 2002, 11–1, 39–59. Google Scholar

  • [28] Chacon B., Martin-Chivelet J., Major palaeoenvironmental changes in the Campanian to Palaeocene sequence of Caravaca (Subbetic zone, Spain). J. Iber. Geol., 2005, 31, 299–310. Google Scholar

  • [29] Sari B., Upper Cretaceous planktonic foraminiferal biostratigraphy of the Bey Daglari Autochthon in the Korkuteli area, Western Taurides, Turkey. J. Foraminiferal Res., 2006, 36, 241–261. Google Scholar

  • [30] Selley C., Applied Sedimentology. Academic Press, London, 446, 1998. Google Scholar

  • [31] Esteves L.S., Finkl J.C.W., Late Cenozoic depositional paleoenvironments of southeast Florida interpreted from core logs. Braz. J. Geol., 1999, 29, 129–134. Google Scholar

About the article

Received: 2013-11-25

Accepted: 2015-02-20

Published Online: 2015-10-14


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0029.

Export Citation

©2015 Murat Gül. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in