Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Atmospheric circulation and storm events in the Baltic Sea

G. V. Surkova
  • Corresponding author
  • Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University Russia, 119991, Moscow, GSP-1, Leninskie Gory, 1
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victor S. Arkhipkin
  • Department of Oceanology, Faculty of Geography, Lomonosov Moscow State University Russia, 119991, Moscow, GSP-1, Leninskie Gory, 1
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander V. Kislov
  • Department of Meteorology and Climatology, Faculty of Geography, Lomonosov Moscow State University Russia, 119991, Moscow, GSP-1, Leninskie Gory, 1
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/geo-2015-0030

Abstract

The storm events in the Baltic Sea are examined in connection with the main weather patterns grouped into the circulation types (CTs), and their changes in present climate. A calendar of storms was derived from results of wave model SWAN (Simulating WAves Nearshore) experiments for 1948-2011. Based on this calendar, a catalogue of atmospheric sea level pressure (SLP) fields was prepared for CTs from the NCEP/NCAR dataset. SLP fields were then analyzed using a pattern recognition algorithm which employed empirical orthogonal decomposition and cluster analysis. For every CT we conducted an analysis of their seasonal and interannual changes, along with their role in storm event formation. An increase of the storm CTs’ frequency in the second part of the 20th century was shown to be in a close agreement with teleconnection circulation patterns such as the Arctic Oscillation, North Atlantic Oscillation and the Scandinavian blocking.

Keywords: atmospheric circulation; storm events; classification

References

  • [1] Meier H. E. M., Eilola K., Almroth E., Climate-related changes in marine ecosystems simulated with a 3-dimensional coupled physical-biogeochemical model of the Baltic Sea, Clim Res. 2011, Vol. 48: 31-55CrossrefGoogle Scholar

  • [2] Stigebrandt A., Gustafsson Bo G., Response of the Baltic Sea to climate change-theory and observations, Journal of Sea Research. 2003, 49, 243- 256.CrossrefGoogle Scholar

  • [3] Surkova G.V., Arkhipkin V.S., Kislov A.V., Atmospheric circulation and storm events in the Black Sea and Caspian Sea, Central European Journal of Geosciences, V. 5, No 4, pp. 548-559.Google Scholar

  • [4] Rozhdestvensky A.V., Raschet pogreshnosti krivyh obespechennosti po neodnorodnoj gidrologicheskoj informatsii (Calculations of frequency curves from nonhomogeneous hydrological information, Trudy LGMI, Vyp. 2, 1964, pp. 113-126. (In Russian).Google Scholar

  • [5] Rossby C.G., The scientific basis of modern meteorology, in Climate and Man, Yearbook of Agriculture, Washington, US Dept. of Agriculture, 1941, p. 599.Google Scholar

  • [6] Corti S., Molteni F., Palmer T. N., Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature 398, 1999, 799-802 doi:10.1038/19745CrossrefGoogle Scholar

  • [7] Ashok, K., and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481-484Google Scholar

  • [8] Huth R., Beck C., Philipp A, Demuzere M., Ustrnul Z., Cahynová M., Kyselý J., Tveito O.E., Classifications of Atmospheric Circulation Patterns Recent Advances and Applications, Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 2008, 105-152, doi: 10.1196/annals.1446.019.CrossrefGoogle Scholar

  • [9] Demuzere M., Kassomenos P., Philipp A., The COST733 circulation type classification software: an example for surface ozone concentrations in Central Europe, Theor Appl Climatol., 2011, 105, 143-166, DOI 10.1007/s00704-010-0378-4CrossrefGoogle Scholar

  • [10] Brisson E., Demuzere M., Kwakernaak B., Van Lipzig N. P. M., Relations between atmospheric circulation and precipitation in Belgium, Meteorol Atmos Phys., 2010, DOI 10.1007/s00703-010-0103-yCrossrefGoogle Scholar

  • [11] Corte-Real J., Qian B., Xu H., Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation, International Journal of Climatology, 1998, 18, 619-635CrossrefGoogle Scholar

  • [12] Corte-Real J., Qian B.&Xu H., Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre, GCM. Clim. Dyn. 1999, 15, 921-935Google Scholar

  • [13] Santos J.A., Corte-Real J., Leite S.M., Weather regimes and their connection to the winter rainfall in Portugal, Int. J. Climatol., 2005, 25, 33-50CrossrefGoogle Scholar

  • [14] Girjatowicz J.P., Effects of atmospheric circulation on ice conditions in the southern Baltic coastal lagoons, Int. J. Climatol., 2001, 21: 1593-1605.CrossrefGoogle Scholar

  • [15] Lehmann A., Hinrichsen H. H., and Krauss W., 2002, Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea, Tellus A 54: 299-316.Google Scholar

  • [16] Post P., Truija V., Tuulik J., Circulation weather types and their influence on temperature and precipitation in Estonia, Boreal Env.Res. 2002, 7, 281-289, etc.Google Scholar

  • [17] Booij N., Ris R. C., and Holthuijsen L. H., A third-generationwave model for coastal regions, 1. Model description and validation, J. Geophys. Res., 1999, 104, 7649-7666Google Scholar

  • [18] SWAN, Scientific and technical documentation, SWAN Cycle III. Version 40.91A. [Available from Delft University of Technology, Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section, P.O. Box 5048, 2600 GA Delft, The Netherlands; http://www.swan.tudelft.nl] Google Scholar

  • [19] The SWAN team, SWAN USER MANUAL, Delft University of Technology, 2013, http://www.swan.tudelft.nl/ Google Scholar

  • [20] Kalnay et al., The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 1996, vol.77, 437-470.Google Scholar

  • [21] Leppäranta M.,Myrberg K., Physical Oceanography of the Baltic Sea, Springer Science & Business Media, 2009, 408 p.Google Scholar

  • [22] Feistel R., Nausch G., Wasmund N. (Ed.), State and Evolution of the Baltic Sea, 1952-2005: A Detailed 50-Year Survey, 2008.Google Scholar

  • [23] Terziev F.S., Rozhkov V.A., Smirnova A.I. (Eds.) Gidrometeorologia I gidrokhimia morey SSSR [Hydrometeorology and hydrochemistry of the seas in the USSR], Hydrometeoizdat, Leningrad, 1991, Vol.III-1, Baltijskoe more [The Baltic Sea], Gidrometeorologicheskie uslovia [Hydrometeorological conditions], 450 p. (in Russian).Google Scholar

  • [24] Soomere T., Räämet A., Long-term spatial variations in the Baltic Sea wave fields, Ocean Sci. 2011, 7, 141-150.CrossrefGoogle Scholar

  • [25] Soomere T., Döös K., Lehmann A., Meier H. E. M., Murawski J., Myrberg K., Stanev E., The Potential of Current-andWind-Driven Transport for EnvironmentalManagement of the Baltic Sea, Ambio. Feb 2014; 43(1): 94-104.Google Scholar

  • [26] Pietrek S.A., Jasiński J.M.,Winnicki I. A., Analysis of a storm situation over the southern Baltic Sea using direct hydrometeorological and remote sensing measurements results, Scientific Journals of Zeszyty Naukowe, Maritime University of Szczecin, Akademia Morska w Szczecinie, 2014, 38 (110), pp.81-88Google Scholar

  • [27] Omstedt A., Pettersen C., Rodhe J. and Winsor P., 2004. Baltic Sea climate: 200 yr of data on air temperature, sea level variations, ice cover and atmospheric circulation, Climate Research, 25:205-216.CrossrefGoogle Scholar

  • [28] HELCOM, 2013, Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013, Balt. Sea Environ. Proc. No. 137.Google Scholar

  • [29] Rimbu N. and Lohmann G., 2011, Winter and summer blocking variability in the North Atlantic region - evidence from longterm observational and proxy data from southwestern Greenland. Climate of the Past, 7:543-555. 10.5194/cp-7-543-2011.Google Scholar

  • [30] Arkhipkin V., Dobroliubov S., Long-term variability of extreme waves in the Caspian, Black, Azov and Baltic Seas, Geophysical Research Abstracts, Austria, Vienna, 2013, vol. 15, EGU2013-7484Google Scholar

  • [31] Arkhipkin V.S., Gippius F.N., Koltermann K.P., Surkova G.V., Windwaves in the Black Sea: results of a hindcast study, Natural Hazards and Earth System Science, 2014, 14, 11, 2883-2897.Google Scholar

  • [32] Bezopasnost v chrezvychajnyh situatsijah, Monitoring i prognozirovanie opasnyh hydrologicheskih javlenij i processov [Safety in emergencies, Monitoring and forecasting of dangerous hydrological phenomena and processes, General requirements, State standard] GOST R 22.1.08-99. 1999 (in Russian)Google Scholar

  • [33] Akpınar A., van Vledder G.P., Komurcu M.I., Ozger M., Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea, Continental Shelf Research, Volumes 50-51, 15 December, 2012, 80-99Google Scholar

  • [34] Hadadpour S., Moshfeghi H., Jabbari E., Kamranzad B., Wave hindcasting in Anzali, Caspian Sea: a hybrid approach. In: Conley D.C., Masselink G., Russell P.E., O’Hare T. J. (eds.), Proceedings 12th International Coastal Symposium(Plymouth, England), Journal of Coastal Research, 2013, Special Issue No. 65, pp. 237-242Google Scholar

  • [35] Rusu E., Rusu L., Soares C.G., Prediction of Extreme Wave Conditions in the Black Sea with Numerical Models. In proceeding of: 9th International Workshop on Wave Hindcasting and Forecasting, At Victoria, Canada, 2006.Google Scholar

  • [36] Strukov B.S., Zelenko A.A., Resnyansky Yu.D., Martynov S.L., A System of Wind Wave Forecasting in the World Ocean and Seas of Russia, The System’s Structure and its Main Constituents. In: WGNE Blue book, Section 8, Development of and advances in ocean modelling and data assimilation, sea-ice modelling, wave modeling, 2012a, p.3-4Google Scholar

  • [37] Strukov B.S., Zelenko A.A., Resnyansky Yu.D., Martynov S.L., Verification of the Wind Wave Forecasting System for the Black, Azov and Caspian Seas. In: WGNE Blue book, Section 8, Development of and advances in ocean modelling and data assimilation, sea-ice modelling, wave modeling, 2012b, 5-6Google Scholar

  • [38] Buhanovskij A.V., Lopatukhin L.I., Chernysheva E.S., Kolesov A.M., Storm na Chernom more 11 nojabrja 2007 i statistika ekstremalnyh stormov morja (The storm on the Black Sea, November 11, 2011, and extreme storm statistics for the sea). Izvestia RGO, 2009, V.141 (2). 71-79. (in Russian)Google Scholar

  • [39] Corte-Real J., Qian B., Xu H., Regional climate change in Portugal: precipitation variability associated with large-scale atmospheric circulation. International Journal of Climatology, 1998, 18, 619-635CrossrefGoogle Scholar

  • [40] Santos J.A., Corte-Real J., Leite S.M., Weather regimes and their connection to the winter rainfall in Portugal, Int. J. Climatol., 2005, 25, 33-50CrossrefGoogle Scholar

  • [41] Hartigan J. A., Wong, M. A., Algorithm 136, A k-means clustering algorithm, Applied Statistics, 1978, 28, 100Google Scholar

  • [42] Preisendorfer R.W., Principal Component Analysis in Meteorology and Oceanography, Elsevier, 1988, 425Google Scholar

  • [43] Cannon A.J., Whitfield P.H., Lord E.R., Synopticmap pattern classification using recursive partitioning and principal component analysis, Monthly Weather Review, 2002, 130, 1187-1206Google Scholar

  • [44] Barnston A.G., Livezey R.E., Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Monthly Weather Review, 1987, 115, 1083-1126Google Scholar

  • [45] Stahl K., Moore R.D., McKendry I.G., The role of synopticscale circulation in the linkage between large-scale oceanatmosphere indices and winter surface climate in British Columbia, Canada. Int. J. Climatol., 2006, 26, 541-560CrossrefGoogle Scholar

  • [46] Philipp A., Bartholy J., Beck C., ErpicumM., Esteban P., Fettweis X., Huth R., James P., Jourdain S., Kreienkamp F., Krennert T., Lykoudis S., Michalides S.C., Pianko-Kluczynska K., Post P., Alvarez D.R., Schiemann R., Spekat A., Tymvios F.S., Cost733cat - a database of weather and circulation type classifications, Phys Chem Earth (Special Issue), 2010, 35, 360-373Google Scholar

  • [47] Solman S.A., Menendez C.G., Weather regimes in the South American sector and neighbouring oceans during winter, Climate Dynamics, 2003, 21: 91-104.CrossrefGoogle Scholar

  • [48] NOAA National Weather Service, Climate Prediction Center. http://www.cpc.ncep.noaa.gov/data Google Scholar

  • [49] Wilks D.S., Statistical methods in the atmospheric sciences, Elsevier. 2011, 676 pGoogle Scholar

  • [50] Tyrlis E., Hoskins B.J., Aspects of a Northern Hemisphere atmospheric blocking climatology, J. Atmos. Sci., 2008, 65, 1638-1652.Google Scholar

  • [51] Cassou C., Euro-Atlantic regimes and their teleconnections, Proceedings: ECMWF Seminar on Predictability in the European and Atlantic regions, 6 - 9 September 2010. 2010, 1-14.Google Scholar

  • [52] IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007, 996 pp.Google Scholar

  • [53] IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar

About the article

Received: 2014-07-30

Accepted: 2015-01-27

Published Online: 2015-09-25


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0030.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in