Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Soil-atmosphere relationships: The Hungarian perspective

Ferenc Ács
  • Department of Meteorology, Eötvös Loránd University, Pázmány Péter sétány 1/A., Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kálmán Rajkai
  • Centre for Agricultural Research, Institute for Soil Science and Agricultural Chemistry, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hajnalka Breuer
  • Department of Meteorology, Eötvös Loránd University, Pázmány Péter sétány 1/A., Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tamás Mona
  • Department of Meteorology, Eötvös Loránd University, Pázmány Péter sétány 1/A., Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ákos Horváth
Published Online: 2015-10-12 | DOI: https://doi.org/10.1515/geo-2015-0036


This study discusses scientific contributions analyzing soil-atmosphere relationships. These studies deal with both the biogeophysical and biogeochemical aspects of this relationship, with biogeophysical aspects being in the majority. All of the studies refer either directly or indirectly to the fundamental importance of soil moisture content. Moisture has a basic influence on the spatiotemporal pattern of evapotranspiration, and so 1) on cloud formation and precipitation events by regulating the intensity of convection, and 2) on the trace-gas exchanges in the near-surface atmosphere. Hungarian modeling efforts have highlighted that soils in the Pannonian Basin have region-specific features. Consequently, shallow and deep convection processes are also, to some extent, region-specific, at least in terms of the diurnal change of the planetary boundary layer height and the spatial distribution of convective precipitation. The soil-dependent region-distinctiveness of these two phenomena has been recognized; at the same time the strength of the relationships has not yet been quantified.

Keywords: Soil; atmosphere; interaction; modeling; biogeophysical features; biogeochemical features; Pannonian Plain


  • Google Scholar

  • [1] Charney J.G., Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc. 1975, 101, 193-202 CrossrefGoogle Scholar

  • [2] Nicholson S.E., The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability, ISRN Meteorology 2013, Article ID 453521, 32 pp Google Scholar

  • [3] Charney J.G., Stone P., Quirk W., Drought in the Sahara. A biophysical feedback mechanism, Science 1975, 187, 434-435 CrossrefGoogle Scholar

  • [4] Charney J.G., Quirk W., Chow S., Kornfield J., A comparative study of the effects of albedo change on drought in semi-arid regions, J. Atmos. Sci. 1977, 34(9), 1366–1386 CrossrefGoogle Scholar

  • [5] Delsol F., Miyakoda F., Clarke R., Parameterized processes in the surface boundary layer of an atmospheric circulation model, Q. J. R. Meteorol. Soc. 1971, 97, 181–208 CrossrefGoogle Scholar

  • [6] Randall D.A., Abeles J., Corsetti T., Seasonal simulations of the PBL and boundary-layer stratocumulus clouds with a GCM, J. Atmos. Sci. 1985, 42, 641–676 CrossrefGoogle Scholar

  • [7] Hahmann A.N., Dickinson R., RCCM2-BATS model over tropical South America: Applications to tropical deforestation, J. Climate 1997, 10, 1944–1964 CrossrefGoogle Scholar

  • [8] Shao Y.P., Physics and Modelling of Wind Erosion, Springer Netherlands, Dordrecht, 2008 Google Scholar

  • [9] Shao Y.P., Leslie L.M., Wind erosion prediction over the Australian continent, J. Geophys. Res. 1997, 102, 30091–30105 CrossrefGoogle Scholar

  • [10] Ostle N.J., Smith P., Fisher R., Woodward F.I., Fisher J.B., Smith J.U., Galbraith D., Levy P., Meir P., McNamara N.P., Bardgett R.D., Integrating plant-soil interactions into global carbon cycle models, J. Ecol. 2009, 97, 851–863 CrossrefGoogle Scholar

  • [11] Smith K., Ball T., Conen F., Dobbie K., Massheder J., Rey A., Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes, Eur. J. Soil Sci. 2003, 54, 779–791 CrossrefGoogle Scholar

  • [12] Hofstra N., Bouwman A.F., Denitrification in agricultural soils: Summarizing published data and estimating global annual rates, Nutr. Cycl. Agroecosyst. 2005, 72, 521–527 Google Scholar

  • [13] Inglett K.S., Inglett P., Reddy K.R., Osborn T.Z., Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation, Biogeochemistry 2012, 108, 77–90 CrossrefGoogle Scholar

  • [14] Wilson M., Henderson-Sellers A., Dickinson R., Kennedy P., Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics, J. Appl. Meteor. Climatol. 1987, 26, 341–362 CrossrefGoogle Scholar

  • [15] Mihailovic D., de Bruin H., Jeftic M., van Duken A., A study of the sensitivity of land surface parameterization to the inclusion of different fractional covers and soil textures, J. Appl. Meteor. Climatol. 1992, 31, 1477–1487 CrossrefGoogle Scholar

  • [16] Ek M., Cuenca R., Variations in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development, Boundary-Layer Meteorol. 1994, 70, 369–383 Google Scholar

  • [17] Cuenca R., Ek M., Mahrt L., Impact of soil water property parameterization on atmospheric boundary layer simulation, J. Geophys. Res. 1996, 101(D3), 7269–7277 CrossrefGoogle Scholar

  • [18] Wetzel P., Argentini S., Boone A., Role of land surface in controlling daytime cloud amount: Two case studies in the GCIPSW area, J. Geophys. Res. 1996, 101, 7359–7370 CrossrefGoogle Scholar

  • [19] Ek M., Holtslag A., Influence of soilmoisture on boundary layer cloud development, J. Hydrometeor. 2004, 5, 86–99 CrossrefGoogle Scholar

  • [20] Schär C., Lüthi D., Beyerle U., Heise E., The soil-precipitation feedback: A process studywith a regional climate model, J. Climate 1999, 12, 722–741 CrossrefGoogle Scholar

  • [21] Koster R., Suarez M., Higgins W., den Dool H.V., Observational evidence that soil moisture variations affect precipitation, Geophys. Res. Lett. 2003, 30(5), 1241. doi:10.1029/2002GL016571 CrossrefGoogle Scholar

  • [22] Koster R., Dirmeyer P., Guo Z., Bonan G., Chan E., Cox P., et al., Regions of strong coupling between soil moisture and precipitation, Science 2004, 305, 1138–1140 CrossrefGoogle Scholar

  • [23] Seneviratne S., Lüthi D., Litschi M., Schär C., Land-atmosphere coupling and climate change in Europe, Nature 2006, 443, 205–209 CrossrefGoogle Scholar

  • [24] Clark R., Brown S., Murphy J., Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments, J. Climate 2006, 19(17), 4418–4435 CrossrefGoogle Scholar

  • [25] Diffenbaugh N., Giorgi J.P.F., Gao X., Heat stress intensification in the Mediterranean climate change hotspot, Geophys. Res. Lett. 2007, 34(11), 1–6 Google Scholar

  • [26] Clapp R.B., Hornberger G.M., Empirical equations for some hydraulic properties, Water Resour. Res. 1978, 14, 601–604 CrossrefGoogle Scholar

  • [27] Cosby B.J., Hornberger G.M., Clapp R.B., Ginn T.R., A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res. 1984, 20, 682–690 CrossrefGoogle Scholar

  • [28] Schaap M.G., Leij F.J., Database-related accuracy and uncertainty of pedotransfer functions, Soil Sci. 1998, 163, 765–779 CrossrefGoogle Scholar

  • [29] Pachepsky Y.A., Rawls W.J., Accuracy and reliability of pedotransfer functions as affected by grouping soils, Soil Sci. Soc. Am. J. 1999, 63, 1748–1757 CrossrefGoogle Scholar

  • [30] Li C., Frolking S., Frolking T., A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res. 1992, 97, 9759–9776 CrossrefGoogle Scholar

  • [31] Conen F., Dobbie K., Smith K., Predicting N2O emissions from agricultural land through related soil parameters, Glob. Change Biol. 2000, 6, 417–426 CrossrefGoogle Scholar

  • [32] Brockett B., Prescott C., Grayston S., Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada, Soil Biol. Biochem. 2012, 44, 9–20 CrossrefGoogle Scholar

  • [33] Frostegard A., Tunlid A., Baath E., Use and misuse of PLFA measurements in soils, Soil Biol. Biochem. 2010, doi:10.1016/j.soilbio.2010.11.021 CrossrefGoogle Scholar

  • [34] Lauber C., Hamady M., Knight R., Fierer N., Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale, Appl. Environ. Microbiol., 2009, 75, 5111–5120 CrossrefGoogle Scholar

  • [35] Breuer H., Ács F., Laza B., Horváth A., Matyasovszky I., Rajkai K., Sensitivity of MM5-simulated planetary boundary layer height to soil dataset: Comparison of soil and atmospheric effects, Theor. Appl. Climatol. 2012, 109(3–4), 577–590 CrossrefGoogle Scholar

  • [36] Breuer H., Ács F., Horváth A., Laza B.,Matyasovszky I., Németh P., et al., A sensitivity study on the soil parameter-boundary layer height interrelationship, ISRN Meteorology 2012, Article ID 786592, 7 pages, doi: 10.5402/2012/786592 CrossrefGoogle Scholar

  • [37] Horváth A., Ács F., Breuer H., On the relationship between soil, vegetation and severe convective storms: Hungarian case studies, Atmos. Res. 2009, 93, 66–81 CrossrefGoogle Scholar

  • [38] Ács F., Horváth A., Breuer H., Rubel F., Effect of soil hydraulic parameters on the local convective precipitation, Meteorol. Z. 2010, 19(2), 143–153 CrossrefGoogle Scholar

  • [39] Várallyay G., Michéli E., Soil Atlas of Europe, European Soil Bureau Network, European Commission, Oflce for Oflcial Publications of the European Communities, 2005 Google Scholar

  • [40] Nemes A., Multi-scale pedotransfer functions for Hungarian soils, Ph.D. thesis,Wageningen University, Netherlands, 2003 Google Scholar

  • [41] Fodor N., Rajkai K., Computer program (SOILarium1.0) for estimating the physical and hydrophysical properties of soils from other soil characteristics, Agrokémia és Talajtan 2011, 60, 27– 40 Google Scholar

  • [42] Czender C., Komjáthy E., Mészáros R., Lagzi I., Spatial andtemporal variability of ozone deposition, Adv. Sci. Res. 2009, 3, 5–7 CrossrefGoogle Scholar

  • [43] Ács F., Breuer H., Modeling of soil respiration in Hungary, Agrokémia és Talajtan 2006, 55(1), 59–68 Google Scholar

  • [44] Seneviratne S., Corti T., Davin E., Hirschi M., Jaeger E., Lehner I., et al., Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev. 2010, 99, 125–161 CrossrefGoogle Scholar

  • [45] Bonan G., Ecological Climatology, Cambridge University Press, Cambridge, 2002. Google Scholar

  • [46] Rabb P., Natural conditions in the Carpathian Basin of the middle ages, Periodica Polytechnica 2007, 38(2), 47–59 Google Scholar

  • [47] Borhidi A., Kevey B., Lendvai G., Plant communities of Hungary, Akadémiai Kiadó, Budapest, 2013 Google Scholar

  • [48] Wösten J., Lilly A., Nemes A., Bas C.L., Development and use of a database of hydraulic properties of European soils, Geoderma 1999, 90, 169–185 CrossrefGoogle Scholar

  • [49] Várallyay G., Szücs L., Rajkai K., Zilahy P., Murányi A., Hydrophysical classification and 1:100000 scale maps of Hungarian soils, Agrokémia és Talajtan, 1980, 29, 77–112 (in Hungarian with English summary) Google Scholar

  • [50] Feddema J.J., A revised Thornthwaite-type global climate classification, Physical Geography 2005, 26, 442–466 Google Scholar

  • [51] Ács F., Horváth A., Breuer H., The role of soil in variations of the weather, Agrokémia és Talajtan 2008, 57, 225–238 Google Scholar

  • [52] Machon A., Horváth L., Weidinger T., Grosz B., Pintér K., Tuba Z., et al., Estimation of net nitrogen flux between the atmosphere and a semi-natural grassland ecosystem in Hungary, Eur. J. Soil Sci. 2010, 61, 631–639 CrossrefGoogle Scholar

  • [53] Ács F., On transpiration and soilmoisture content sensitivity to soil hydrophysical data, Boundary-Layer Meteorol. 2005, 115, 473–497 Google Scholar

  • [54] Garcia-Carreras L., Parker D.,Marshman J., What is the mechanism for the modification of convective cloud distributions by land-surface induced flows? J. Atmos. Sci. 2011, 68, 619–634 CrossrefGoogle Scholar

  • [55] Betts A.K., Fife atmospheric boundary layer budget methods, J. Geophys. Res. 1992, 97, 18, 523–18, 531 Google Scholar

  • [56] Zhang Y., Klein S., Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site, J. Atmos. Sci. 2010, 67, 2943–2959 CrossrefGoogle Scholar

  • [57] Katul G., Oren R., Manzoni S., Higgins C., Parlange M., Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system, Rev. Geophys. 2012, 50, RG3002, doi: 10.1029/2011RG000366 CrossrefGoogle Scholar

  • [58] Ács F., A comparative analysis of transpiration and bare soil evaporation, Boundary-Layer Meteorol. 2003, 109, 139–162 Google Scholar

  • [59] Sun S.F., Moisture and heat transport in a soil layer forced by atmospheric conditions,Master’s thesis, University of Connecticut, USA, 1982 Google Scholar

  • [60] Dolman A.J., A multiple-source land surface energy balance model for use in general circulation models, Agric. For. Meteor. 1993, 65, 21–45 CrossrefGoogle Scholar

  • [61] Beljaars A.C.M., Bosveld F., Cabauw data for the validation of land surface parameterization schemes, J. Climate 1997, 10, 1172–1194 CrossrefGoogle Scholar

  • [62] Ács F., Szász G., Characteristics of microscale evapotranspiration: A comparative analysis, Theor. Appl. Climatol. 2002, 73, 189–205 CrossrefGoogle Scholar

  • [63] Koster R.D., Suarez M.J., A comparative analysis of two land surface heterogeneity representations, J. Climate 1992, 5, 1379–1391 CrossrefGoogle Scholar

  • [64] Famiglietti J.S., Wood E.F., Multi-scale modeling of spatially variable water and energy balance processes, Water Resour. Res. 1994, 30, 3061–3078 CrossrefGoogle Scholar

  • [65] Giorgi F., An approach for the representation of surface heterogeneity in land surface models. Part II. Validation and sensitivity experiments, Mon. Wea. Rev. 1997, 125, 1900–1919 Google Scholar

  • [66] Kim C.P., Entekhabi D., Impact of soil heterogeneity in a mixedlayer model of the planetary boundary layer, Hydrolog. Sci. J. 1998, 43(4), 633–658 CrossrefGoogle Scholar

  • [67] Shao Y., Sogallaa M., Kerschgens M., Brücher W., Effects of land-surface heterogeneity upon surface fluxes and turbulent conditions, Meteorol. Atmos. Phys. 2001, 78, 157–181 CrossrefGoogle Scholar

  • [68] Ronda R.J., van den Hurk B.J.J.M., Holtslag A.A.M., Spatial heterogeneity of the soil moisture content and its impact on surface flux densities and near-surface meteorology, J. Hydrometeor. 2002, 3, 556–570 CrossrefGoogle Scholar

  • [69] Ács F., Breuer H., Szász G., Estimation of actual evapotranspiration and soil water content in the growing season, Agrochemistry and Soil Science 2011, 60, 57–74 Google Scholar

  • [70] Breuer H., Ács F.,Water balance in Hungary in the 20th century based on a multi-layer soil model, Agrokémia és Talajtan 2011, 60, 65–86 Google Scholar

  • [71] Szilágyi J., Józsa J., Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data, Hydrol. Earth System Sci. 2009, 13(5), 629–637 CrossrefGoogle Scholar

  • [72] Szilágyi J., Kovács A., Complementary-relationship-based evapotranspiration mapping (cremap) technique for Hungary, Periodica Polytechnica Civil Engineering 2010, 54(2), 95–100 Google Scholar

  • [73] Xu X., Yang D., Analysis of catchment evapotranspiration at different scales using bottom-up and top-down approaches, Front. Archit. Civ. Eng. China 2010, 4(1), 6577 Google Scholar

  • [74] Mintz Y., Walker G.K., Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature, J. Appl. Meteorol. 1993, 32, 1305–1334 CrossrefGoogle Scholar

  • [75] Wang Q., Takahashi H., A land surface water deficit model for an arid and semiarid region: Impact of desertification on the water deficit status in the Loess Plateau, China. J. Climate 1999, 12, 244–257 CrossrefGoogle Scholar

  • [76] Yang D., Sun F., Liu Z., Cong Z., Ni G., Lei Z., Analyzing spatial and temporal variability of annual water-energy balance in non-humid regions of china using the Budyko hypothesis, Water Resour. Res. 2007, 43, doi: 10.1029/2006WR005224, W04426 CrossrefGoogle Scholar

  • [77] Vivoni E.R., Rodriguez J.C., Watts C.J., On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region, Water Resour. Res. 2010, 46, W02509, doi: 10.1029/2009WR008240 CrossrefGoogle Scholar

  • [78] Vivoni E., Diagnosing seasonal vegetation impacts on evapotranspiration and its Ppartitioning at the catchment scale during SMEX04-NAME. J. Hydrometeor. 2012, 13, 1631–1638 CrossrefGoogle Scholar

  • [79] Doutriaux-Boucher M., Webb M., Gregory J., Boucher O., Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud, Geophys. Res. Lett. 2008, 36, LO2703, doi: 10.1029/2008GL036273 CrossrefGoogle Scholar

  • [80] LeMone M., PennelW., The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure, Mon. Wea. Rev. 1976, 104, 524–539 Google Scholar

  • [81] Breuer H., Ács F., Laza B., Rajkai K., Matyasovszky I., Horváth A.,Weidinger T., Relationship between the hydraulic properties of the soil and the planetary boundary layer, Agrokémia és Talajtan 2012, 61(1), 9–28 (in Hungarian with English summary) Google Scholar

  • [82] Fischer R.A., Frequency distribution of the values of the correlation coeflcient in samples of an indefinitely large population, Biometrika 1915, 10, 507–521 Google Scholar

  • [83] Warrach-Sagi K., Schwitalla T., Wulfmeyer V., Bauer H.S., Evaluation of a climate simulation in Europe based on the WRFNOAH model system: Precipitation in Germany, Climate Dynam. 2013, 41, 755–774 Google Scholar

  • [84] Guillod B., Davin E., Kündig C., Smiatek G., Seneviratne S., Impact of soil map specifications for European climate simulations, Climate Dynam. 2013, 40, 123–141 Google Scholar

  • [85] Reichstein M., Beer C., Soil respiration across scales: The importance of a model data integration framework for data interpretation, J. Plant Nutr. Soil Sci. 2008, 171, 344–354 CrossrefGoogle Scholar

  • [86] Raich J., Schlesinger W., The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus 1992, 44B, 81–99 CrossrefGoogle Scholar

  • [87] Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R., Banza J., et al., Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices, Global Biogeochem. Cy. 2003, 17(4), doi: 10.1029/2003GB002035 CrossrefGoogle Scholar

  • [88] Gras A., Ginovart M., Valls J., Baveye P., Individual-based modelling of carbon and nitrogen dynamics in soils: Parameterization and sensitivity analysis of microbial components, Ecol. Model. 2011, 222, 1998–2010 CrossrefGoogle Scholar

  • [89] Peng C.H., Guiot J., van Campo E., Past and future carbon balance of European ecosystems from pollen data and climatic models simulations, Global Planet. Change 1998, 18, 189–200 CrossrefGoogle Scholar

  • [90] Beier C., Emmett B., Tietema A., Schmidt I., Penuelas J., Kovács-Láng E., et al., Carbon and nitrogen balances for six shrublands across Europe, Global Biogeochem. Cy. 2009, 23, GB4008 Google Scholar

  • [91] Lellei-Kovács E., Kovács-Láng E., Botta-Dukát Z., Kalapos T., Emmett B., Beier C., Thresholds and interactive effects of soil moisture on the temperature response of soil respiration, Eur. J. Soil Biol. 2011, 47, 247–255 CrossrefGoogle Scholar

  • [92] Aiken R., Jawson M., Grochmmer K., Polymenopoulas A., Positional, spatially correlated and random components of variability in carbon-dioxide efflux, J. Environ. Quality 1991, 20, 301–308 CrossrefGoogle Scholar

  • [93] Cape J., Surface ozone concentrations and ecosystem health: past trends and a guide to future projections, Sci. Total Environ. 2008, 400, 257–269 CrossrefGoogle Scholar

  • [94] Fowler D., Pilegaard K., Sutton M., Ambus P., Raivonen M., Duyzer J., et al., Atmospheric composition change: Ecosystems-atmosphere interactions, Atmos. Environ. 2009, 43, 51935267 Google Scholar

  • [95] Sorimachi A., Sakamoto K., Ishihara H., Fukuyama T., Utiyama M., Liu H., et al., Measurements of sulfur dioxide and ozone dry deposition over short vegetation in Nothern China-A preliminary study, Atmos. Environ. 2003, 37, 3157–3166. CrossrefGoogle Scholar

  • [96] Massman W., Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and the possible metric, Atmos. Environ. 2004, 38, 2323–2337 CrossrefGoogle Scholar

  • [97] Mészáros R., Zsély I.G., Szinyei D., Vincze C., Lagzi I., Sensitivity analysis of an ozone deposition model, Atmos. Environ. 2009, 43, 663–672 CrossrefGoogle Scholar

  • [98] Nikolov N., Zeller K., Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere, Environ. Pollut. 2003, 124, 231–246 CrossrefGoogle Scholar

  • [99] Delon C., Reeves C., Stewart D., Serca D., Dupont R., Mari C., et al., Biogenic emissions of nitrogen oxides from soils: Impact on ozone formation in West Africa, Ileaps Newsletter 2009, Issue No. 6, 28–30 Google Scholar

  • [100] Van Veen J.A., Frissel M., Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Centre for Agricultural Publishing and Documentation, Wageningen, 1981 Google Scholar

  • [101] Tanji K., Modeling of soil nitrogen cycle, Agronomy 1982, 22, 721–772 Google Scholar

  • [102] Molina J.A.E., Clapp C.E., Shaffer M.J., Chichester F.W., Larson W.E., NCSOIL, A model of nitrogen and carbon transformations in soil: Description, calibration and behavior, Soil Sci. Soc. Am. J. 1983, 47, 85–91 CrossrefGoogle Scholar

  • [103] Li C., Mosier A.,Wassmann R., Cai Z., Zheng X., Huang Y., et al., Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling, Global Biogeochem. Cycles 2004, 18, GB1043, doi: 10.1029/2003GB002045 CrossrefGoogle Scholar

  • [104] Machon A., Determination of nitrogen exchange between the grassland and atmosphere on the landscape scale using measurements and model calculations, Ph.D. thesis, Szent István University, Hungary, 2011 (in Hungarian) Google Scholar

  • [105] Grosz B.P., Machon A., Horváth L. The DNDC process-oriented ecosystem model. In: Haszpra L (Ed.), Atmospheric greenhouse gases, Springer Science + Business Media, Dordrecht, 2010, 211–214 Google Scholar

  • [106] Horváth L., Asztalos M., Führer E., Mészáros R., Weidinger T., Measurement of ammonia exchange over grassland in the Hungarian great plain, Agric. For. Meteor. 2005, 130, 282–298 CrossrefGoogle Scholar

  • [107] Stéfanon M., Drobinski P., D’Andrea F., Lebeaupin-Brossier C., Bastin S., Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe, Climate Dynam. 2013, DOI 10.1007/s00382-013-1794-9 CrossrefGoogle Scholar

  • [108] Fischer E., Seneviratne S., Lüthi D., Schär C., Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett. 2007, 34:L06707, doi:10.1029/2006 GL029068 CrossrefGoogle Scholar

  • [109] Fischer E., Seneviratne S., Vidale P., Lüthi D., Schär C., Soil moisture-atmosphere interactions during the 2003 European summer heat wave, J. Climate 2007, 20, 5081–5099 Google Scholar

  • [110] Elfatih A., Eltahir B., Pal J., Relationship between surface conditions and subsequent rainfall in convective storms, J. Geophys. Res. 1996, 101(D21), 26237–26245 Google Scholar

  • [111] Findell K., Eltahir E., Atmospheric controls on soil moistureboundary layer interactions. Part II: Feedbacks within the continental United States, J. Hydrometeor. 2003, 4(3), 570–583 CrossrefGoogle Scholar

  • [112] Beljaars A., Viterbo P., Miller M., Betts A., The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture, Mon. Wea. Rev. 1996, 124(3), 362–383 Google Scholar

  • [113] Rowntree P., Bolton J., Simulation of the atmospheric response to soil moisture anomalies over Europe, Q. J. R. Meteorol. Soc. 1983, 109, 501–526 CrossrefGoogle Scholar

  • [114] Raich J., Tufekcioglu A., Vegetation and soil respiration: Correlations and controls, Biogeochemistry 2000, 48, 71–90 CrossrefGoogle Scholar

  • [115] Högberg P., Nordgren A., Buchmann N., Taylor A., Ekblad A., Högberg M., et al., Large-scale forest girdling shows that current photosynthesis drives soil respiration, Nature 2001, 411, 789–792 CrossrefGoogle Scholar

  • [116] de Arellano J., Ouwersloot H., Baldocchi D., Jacobs C., Shallow cumulus rooted in photosynthesis, Geophys. Res. Lett. 2014, 10.1002/2014GL059279 Google Scholar

  • [117] Heus T., van Heerwaarden C.C., Jonker H.J.J., Siebesma A.P., Axelsen S., van den Dries K., et al., Formulation of the Dutch Atmospheric Large-eddy Simulation (DALES) and overview of its applications, Geoscientific Model Development, 2010, 3, 415– 444 Google Scholar

  • [118] Guo Z., Dirmeyer P., Koster R., Bonan G., Chan E., Cox P., et al., GLACE: The Global Land-Atmosphere Coupling Experiment. Part II: Analysis, J. Hydrol. 2006, 7, 611–625 Google Scholar

  • [119] Nemes A., Unsaturated soil hydraulic database of Hungary: HUNSODA, Agrokémia és Talajtan 2002, 51(1–2), 17–26 Google Scholar

  • [120] Santanello J., Peters-Lidard C., Kumar S., Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction, J. Hydrol. 2011, 12, 766– 786 Google Scholar

  • [121] Santanello J., Peters-Lidard C., Kumar S., Alonge C., Tao W.K., A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales, J. Hydrometeor. 2009, 10, 577–599 CrossrefGoogle Scholar

About the article

Received: 2014-03-20

Accepted: 2015-05-12

Published Online: 2015-10-12

Citation Information: Open Geosciences, Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0036.

Export Citation

©2015 F. Ács et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in