Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year

IMPACT FACTOR 2017: 0.696
5-year IMPACT FACTOR: 0.736

CiteScore 2017: 0.89

SCImago Journal Rank (SJR) 2017: 0.323
Source Normalized Impact per Paper (SNIP) 2017: 0.674

Open Access
See all formats and pricing
More options …

Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

G. Bertrand
  • Universidade de São Paulo, Instituto de Geociências, Centro de Perquisas de Aguas Subtarreneas, Rua do lago, 562, 05508-080, Sao Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ H. Celle-Jeanton
  • Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, 63038 Clermont-Ferrand, France; CNRS, UMR 6524, LMV, 63038 Clermont-Ferrand, France; IRD, R 163, LMV, 63038 Clermont-Ferrand, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Huneau
  • Université de Corse Pascal Paoli, Faculté des Sciences et Techniques, Laboratoire d’Hydrogéologie, Campus Grimaldi, BP 52, F-20250 Corte, France; CNRS, UMR 6134, SPE, F-20250 Corte, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Baillieux
  • Université d’Avignon, UMR 1114, INRA, EMMAH, Domaine St Paul Site agroparc, 84914 Avignon cedex 9, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Mauri
  • Université de Neuchâtel, Centre d’Hydrogéologie et de Géothermie, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. Lavastre
  • CNRS, UMR 6524, LMV, 63038 Clermont-Ferrand, France; IRD, R 163, LMV, 63038 Clermont-Ferrand, France; Université de Lyon, Université Jean Monnet, Laboratoire Magmas et Volcans, 23 rue du Dr. Michelon, F-42023 Saint Etienne, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Undereiner / L. Girolami
  • Université François Rabelais de Tours, EA 6293 Géo- Hydrosystèmes Continentaux (GéHCO), Parc de Grandmont, 37200 Tours, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J.S. Moquet
  • Universidade de São Paulo, Instituto de Geociências, Centro de Perquisas de Aguas Subtarreneas, Rua do lago, 562, 05508-080, Sao Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-19 | DOI: https://doi.org/10.1515/geo-2015-0037


The aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaîne des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (ne < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test.

Keywords: Groundwater; Tracer test; Lava flow; Volcanic aquifer; Vulnerability; France


  • [1] Stieljes L., Hydrogéologie de l’îlevolcaniqueocéanique de Mayotte (archipel des Comores, océanIndien occidental) [Hydrogeology of the Mayotte volcanic island (Comores´ archipelgo, occidental Indian ocean], Hydrogeol. 1988, 2, 135–152 Google Scholar

  • [2] Violette S., Ledoux E., Goblet P., Carbonnel J.P., Hydrologic and thermalmodelling of an active volcano: the Piton de la Fournaise, La Réunion Island, J. Hydrol. 1997, 191, 37–63 Google Scholar

  • [3] Kulkarni H., Deolankar S.B., Lalwani A., Hydrogeological framework of the Deccan basalt groundwater systems, west-central India, Hydrogeological Journal 2000, 8, 368–378. CrossrefGoogle Scholar

  • [4] Cruz J.V., Amaral C.S., Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago, Applied Geochemistry 2004, 19, 445–459 CrossrefGoogle Scholar

  • [5] Dafny E., Burg A., Gvirtzman H., Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights, Israel case study, Journal of Hydrology 2006, 330, 506–524 Google Scholar

  • [6] Carrillo-Rivera J.J., Varsányi I., Kovács L., Cardona A., Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments, Water, Air, and Soil Pollution 2007, 184, 77–103 Google Scholar

  • [7] Demlie M., Wohnlich S., Ayenew T., Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia, Journal of Hydrology 2008, 353, 175–188 Google Scholar

  • [8] D’Ozouville N., Auken E., Sorensen K., Violette S., DeMarsily G., Deffontaines B., et al.,Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano, Earth and Planetary Science Letters 2008, 269, 518– 522 Google Scholar

  • [9] Bertrand G., Celle-Jeanton H., Huneau F., Loock S., Rénac C., Identification of different groundwater flowpaths within volcanic aquifers using natural tracers: Influence of lava flows morphology, (Argnat basin, Chaîne des Puys, France), Journal of Hydrology 2010, 391(3–4), 223–234 CrossrefGoogle Scholar

  • [10] Charlier J.B., Lachassagne P., Ladouche B., Cattan P., Moussa R., Voltz M., Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multidisciplinary experimental approach, Journal of Hydrology 2011, 398, 155–170 Google Scholar

  • [11] Koh D.C., Ha K., Lee K.S., Yoon Y.Y., Ko K.S., Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island, Journal of Hydrology 2012, 432–433, 61–74 Google Scholar

  • [12] Lachassagne P., Aunay B., Frissant N., Guilbert M., Malard A., High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: aMayotte, Comoros, case study, Terra Nova 2014, 26, 307–321. CrossrefGoogle Scholar

  • [13] Council of the European Community, Directive 2000/60/EU of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Oflcial Journal of European Communities L327/1 23.10.2000 http://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=OJ:L:2000:327:0001:0072:EN:PDF Accessed 24 Oct 2013 Google Scholar

  • [14] Kløve B., Ala-aho P., Bertrand G., Boukalova Z., Ertürk A., Goldscheider N., et al., Groundwater Dependent Ecosystems: Part I – Hydroecological status and trends, Environmental Sciences and Policies 2011, 14(7), 770–781 Google Scholar

  • [15] Kløve B., Ala-aho P., Allan A., Bertrand G., Druzynska E., Ertürk A., et al., Groundwater Dependent Ecosystems: Part II - Ecosystem services and management in Europe under risk of climate change and land-use intensification, Environmental Sciences and Policies 2011, 14(7), 782–793 Google Scholar

  • [16] Bertrand G., Goldscheider N., Gobat J.M., Hunkeler D., Review: from multi-scale conceptualization of groundwater-dependent ecosystems to a classification system for management purposes, Hydrogeology Journal 2012, 20, 5–25 CrossrefGoogle Scholar

  • [17] Bertrand G., Masini J., Goldscheider N., Meeks J., Lavastre V., Celle-Jeanton H., et al., Determination of spatio-temporal variability of tree water uptake using stable isotopes (δ18O; δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn Forest, Switzerland, Ecohydrology 2014, 7(2), 319–333, DOI: 10.1002/eco.1347 CrossrefGoogle Scholar

  • [18] MacDonald G.A., Pahoehoe, a’a and block lava, American Journal of Science 1953, 251, 169–191 Google Scholar

  • [19] Loock S., Cinématique, déformation et mise en place des laves Google Scholar

  • [Cinematic, deformation and setting of lava flows], PhD thesis, Université Blaise Pascal Clermont-Ferrand II, France (in French) Google Scholar

  • [20] Cook P.G., A guide to regional groundwater flowin fractured rock aquifers, CSIRO Australia Ed. 2003. Google Scholar

  • [21] Wood W.W., Fernandez L.A., Volcanic Rocks. In: Back W.,Rosenhein J.S. and Seaber P.R. (Ed.), The Geology of North America, Volume O–2, Hydrogeology, Geological Society of America 1988, 353–365 Google Scholar

  • [22] Custodio E., Low permeability volcanics in the Canary Islands (Spain), Proceedings of the 18th Congress of the International Hydrogeologist Association 1985, 533–544. Google Scholar

  • [23] Join J.L., Coudray J., Caractérisation géostructurale des émergences et typologie des nappes d’altitude en milieu volcanique insulaire (île de la Réunion) Google Scholar

  • [Geostructural characterization of outlets and typology of altitude groundwater systems in insulary volcanic media], GeodinamicaActa 1993, 6(4), 243–254 (in French) Google Scholar

  • [24] Join J.-L., Folio J.-L., Robineau B., Aquifers and groundwater within active shield volcanoes, Evolution of conceptual models in the Piton de la Fournaise volcano, J VolcanolGeothermRes 2005, 147, 187–201. Google Scholar

  • [25] Nascimento Prada S., Silva M.O., Cruz J.V., Groundwater behaviour in Madeira, volcanic island (Portugal), Hydrogeology Journal 2005, 13, 800–812 CrossrefGoogle Scholar

  • [26] Livet M., Captages d’Argnat et des Grosliers. Avis sur les mesures de protection. Rapport technique Google Scholar

  • [Argnat and Les Grosliers catchments. Insights on their protection], Technical report, Syndicat Basse Limagne, Maringues, 2001 (in French) Google Scholar

  • [27] Livet M., D’Arcy A., Dupuy C. Synthèse hydrogéologique de l’Auvergne Google Scholar

  • [Hydrogeologic synthesis of Auvergne], In Roux J.C., (Ed.), Aquifères et eaux souterraines en France, BRGM/IAH Editions, 2006 (in French) Google Scholar

  • [28] Barbaud J.Y. (1983): Etude chimique et isotopique des aquifères du Nord de la Chaîne des Puys, Temps de transit et vulnérabilité des systèmes de Volvic et d’Argnat Google Scholar

  • [Chemical and isotopic study of the northern aquifers of the Chaîne des Puys. Transit time and vulnerability of the Volvic and Argnat systems], PhD, Université d’Avignon et des Pays du Vaucluse, 1983 (in French) Google Scholar

  • [29] Maloszewski P., Zuber A., On the theory of tracer experiments in fissured rocks with a porous matrix, Journal of Hydrology 1985, 79, 333–358 CrossrefGoogle Scholar

  • [30] Maloszewski P., Zuber A., Mathematical modelling of tracer behaviour in short-term experiments in fissured rocks, Water Resource Research 1990, 26, 1517–1528 Google Scholar

  • [31] Vereecken H., Döring U., Hardelauf H., Jaeckel U., Hashagen U., Neuendorf O., Schwarze H., Seidemann R., Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment, Journal of Contaminant Hydrology 2000, 45, 329– 358. CrossrefGoogle Scholar

  • [32] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J., Counce D.A., Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests, Journal of Contaminant Hydrology 2003, 62–63, 613–636 Google Scholar

  • [33] Gelhar L.W., Welty C., Rehfeldt K., A critical review of data on field-scale dispersion in aquifers, Water Resources Research 1992, 28(7), 1955–1974 CrossrefGoogle Scholar

  • [34] Reimus P.W., Callahan T.J.,Matrix diffusion rates in fractured volcanic rocks at the Nevada Test Site: Evidence for a dominant influence of effective fracture apertures, Water Resources Research 2007, 43, W07421 Google Scholar

  • [35] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J., Counce D.A., Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests, J. Contam. Hydrol. 2003a, 62–63, 613–626. Google Scholar

  • [36] Neretnieks I., Diffusion in the rock matrix: an important factor in radionuclide retardation? Journal of Geophysical Research 1980, 85, 4379–4397. Google Scholar

  • [37] Grisak G.E., Pickens J.F., Solute transport through fracturedmedia, 1. The effect of matrix diffusion.Water Resources Research 1980, 16, 719–730. CrossrefGoogle Scholar

  • [38] Tang D.H., Frind E.O., Sudicky E.A., Contaminant transportin fractured porous media: analytical solution for a single fracture, Water Resources Research 1981, 17, 555–564. CrossrefGoogle Scholar

  • [39] Perrin J., Pochon A., Jeannin P.Y., Zwahlen F., Vulnerability assessment in karstic areas: validation by field experiments, Environmental Geology 2004, 46: 237–245 Google Scholar

  • [40] Lauber U., Goldscheider N., Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (WettersteinMountains, Germany), Hydrogeology Journal 2014, 22: 1807–1824 CrossrefGoogle Scholar

  • [41] Eddebbarh A.A., Zyvoloski G.A., Robinson B.A., Kwicklis E.M., Reimus P.W., Arnold B.W., Corbet T., Kuzio S.P., Faunt C., The saturated zone at Yucca Mountain: an overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration, Journal of Contaminant Hydrology 2003, 62–63, 477–493 Google Scholar

  • [42] Glangeaud P., La Chaîne des Puys C. Bull. Serv. Geol. map. France XXII (135), 1913, 256 p (in French) Google Scholar

  • [43] Michel R., Hydrogeologie des formations volcaniques de l’Auvergne Google Scholar

  • [Hydrogeology of the volcanic formations in Auvergne], Bull. Soc. Geol. Fr. 1957, 7, 977–994. Google Scholar

  • [44] Van der Min J., Etude hydrogéologique des grands captages d’eau potable dans les coulées de lave des environs de Clermont-Ferrand Google Scholar

  • [Hydrogeologic study of drinking water catchments in the lava flows of the Clermont-Ferrand area], PhD, Université de Clermont-Ferrand 1945 (in French) Google Scholar

  • [45] Belkessa R., Hydrogéologie de la Chaîne des Puys Google Scholar

  • [Hydrogeology of the Chaîne des Puys], Master thesis, Université de Clermont-Ferrand, France, 1977 (in French) Google Scholar

  • [46] Fournier C., Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puy -de-Dôme, France), Geophysical Prospecting 1989, 37, 647–668 CrossrefGoogle Scholar

  • [47] Bouchet C., Hydrogéologie du milieu volcanique, le bassin de la Veyre, analyse et modélisation du bassin versant du lac d’Aydat, étude d’un aquifèrefissurébasaltiqueGoogle Scholar

  • [Volcanic media hydrogeology, the Veyre basin, analysis and modelling of the Aydat lake watershed, study of a fissured basaltic aquifer], PhD, Université d’Avignon et des Pays du Vaucluse, France, 1987 (in French) Google Scholar

  • [48] Belin J.M., Livet M., Heraud H., Autoroute Périgueux Clermont- Ferrand. Dossier d’étude préliminaire de la Chaîne des Puys Google Scholar

  • [Perigueux-Clermont-Ferrand motorway. Preliminary study folder of the Chaîne des Puys]. Ministère de l’équipement et du Logement, CETE Lyon, laboratoire régional de Clermont- Ferrand, 1988 (in French) Google Scholar

  • [49] Gaubi E.B., Etude hydrogéologique de l’extrémité aval du bassin d’Argnat (Chaîne des Puys,Massif Central Français). Projet de l’autoroutePerigueux-Clermont-Ferrand Google Scholar

  • [Hydrogeologic study of the downstream part of the Argnat basin (Chaîne des Puys, French Massif Central). Perigueux-Clermont-Ferrand motorway project], Master thesis in Hydrogeology, Université de Franche-Comté, France, 1990 (In French) Google Scholar

  • [50] Joux M., Structure et fonctionnement hydrogéologique du système aquifère volcanique des eaux minerales de Volvic (Chaîne des Puys, Massif Central Français) Google Scholar

  • [Structure and hydrogeologicfunctiuning of the Volvic mineral waters volcanic aquifer system (Chaîne des Puys, French Massif Central], PhD, Univesité d’Avignon et des Pays du Vaucluse, France, 2002 (In French) Google Scholar

  • [51] Boivin P., Besson J.C., Briot D., Camus G., De Goër D., Herve A., Gourgaud A., Labazuy P., De Larouzière F.D., Livet M., Mergoil J., Miallier D., Morel J.M., Vernet G., Vincent P.M., Volcanologie de la Chaîne des Puys, Massif Central Français Google Scholar

  • [Volcanology of the Chaîne des Puys, French Massif Central], 4me édition, Editions du parc naturel régional des volcans d’Auvergne, 2004 Google Scholar

  • [52] Josnin J.Y., Livet M., Besson J.C., Characterizing unsaturated flow from packed scoriated lapilli: Application to Strombolian cone hydrodynamic behaviour, Journal of Hydrology 2007, 335, 225–239 Google Scholar

  • [53] Bertrand G., Celle-Jeanton H., Loock S., Huneau F., Lavastre V., Contribution of δ13CCITD and PCO2eq measurements to the understanding of groundwater mineralization and carbon patterns in volcanic aquifers. Application to Argnat Basin (Massif Central), Aquatic Geochemistry 2013, 19(2), 147–171, DOI: 10.1007/s10498-012-9185-0 CrossrefGoogle Scholar

  • [54] Aubignat A., Le gisement hydrominéral de Volvic en Auvergne Google Scholar

  • [The Volvic hydromineral spring in Auvergne], Revue des sciences naturelles d’Auvergne 1973, 39, 40–68 Google Scholar

  • [55] Bertrand G., De la pluie à l’eau souterraine. Apport du traçage naturel (ions majeurs, isotopes) à l’étude du fonctionnement des aquifères volcaniques (Bassin d’Argnat, Chaîne des Puys, France) Google Scholar

  • [Fromrain to groundwater. Contribution of natural tracer tests (major ions, isotopes) for the study of volcanic aquifers (Bassind’Argnat, Chaîne des Puys, France)], PhD thesis, Université Blaise Pascal- Clermont-Ferrand II, France, 2009 (In French) http://tel.archives-ouvertes.fr/index.php? halsid=n0lf5ikv2986kmu11j1e39pr47&view_this_doc=tel- 00556910&version=1 Accessed 19 Feb 2015 Google Scholar

  • [56] Fiorillo F., Esposito L., Guadagno F.M., Analyses and forecast of water resources in an ultra-centenarian spring discharge series from Serino (Southern Italy), Journal of Hydrology 2007, 336, 125–138 Google Scholar

  • [57] Lorenzo-Lacruz J., Vicente-Serrano S.M., López-Moreno J.I., Morán-Tejeda E., Zabalza J., Recent trends in Iberian stream flows (1945–2005), Journal of Hydrology 2012, 414–415, 463– 475 Google Scholar

  • [58] Molinari J., Peaudecerf P., Essais conjoints au laboratoire et sur le terrain en vue d’une approche simplifiée de la prévision des propagations de substances nuisibles dans les aquifères réels Google Scholar

  • [Combined laboratory and field test to design a simplified approach of chemical propagation forecast within real aquifers], Symposium on Hydrodynamic diffusion and dispersion in porous media, Pavie, Avril 1977, A.I.R.H. Comité milieux poreux, 1977, 89–102 Google Scholar

  • [59] Chambers Meigs L., Bahr J.M., Tracer test evaluation of groundwater - surface water interactions. Proceedings of the Yokohama Symposium Tracers in Hydrology, IAHS Publ. 1993, 215, 235–240 Google Scholar

  • [60] Bowman R.S., Evaluation of Some New Tracers for Soil Water Studies. Soil Sci. Soc. Am. J. 1984, 48(5), 987–993 CrossrefGoogle Scholar

  • [61] Bradbury M.H., Green A., Measurement of important parameters determining aqueous diffusion rates through crystalline rock matrices, Journal of Hydrology 1985, 82, 39–55 CrossrefGoogle Scholar

  • [62] HACH, Electrochemical products for analysis, available via http://www.meditecna.com/pdfs/ sensionfamilyofelectrochemcatalog.pdf Accessed 07 Oct 2014 Google Scholar

  • [63] Bear J., Dynamics of fluids in porous media, American Elsevier Publishing Comp. Ed., New York-London-Amsterdam, 1972 Google Scholar

  • [64] Kreft A., Zuber A., On the physical meaning of the dispersion equation and its solution for different initial boundary conditions, Chem. Eng. Sci. 1978, 33, 1471–1480 CrossrefGoogle Scholar

  • [65] Maloszewski P., Benischke R., Harum T., Zojer H., Estimation of solute transport parameters in heterogeneous groundwater systems of a karstic aquifer using artificial tracer experiments, Water Down Under, 1994, 94, 105–111 Google Scholar

  • [66] Witthüser K., Reichert B., Hötzl. Contaminant transport in fractured chalk: Laboratory and field experiments, Ground Water, 2003, 41(6), 806–815 Google Scholar

  • [67] Novakowski K.S., Evans G.V., Lever D.A., Raven K.G., A field example of measuring hydrodynamic dispersion in a single fracture, Water Resource Research 1985, 21(8), 1165–1174 Google Scholar

  • [68] Banton O., Bangoy L.M., Hydrogéologie, Multiscience environnementale des eaux souterraines Google Scholar

  • [Hydrogeology, environmental multiscience of groundwaters], 1997, Presses de l’Université du Quebec, 460 p (In French) Google Scholar

  • [69] Newman J., Electrochemical Systems, 1973, Prentice-Hall, Englewood Cliffs, New Jersey Google Scholar

  • [70] Himmelsbach T., Hötzl H.,Maloszewski P., Solute transport process in a highly permeable fault zone of Lindau fractured rock test site (Germany), Groundwater, 1998, 36(5), 792–800 Google Scholar

  • [71] Cruz J.V., Ensaio sobre a Agua subterrânea nos Açores. Historia, ocorrencia e qualidade. Secretaria Regional do Ambiente Google Scholar

  • [Insights about groundwater in Azores. History, occurence and quality]. Direcçao Regional do Ordenamento do Territorio e dos Recursos Hidricos (Ed.), 2004, 288 p (in Portuguese) Google Scholar

  • [72] Chandrashekhar H., Chandrashekharmain S.S., Ganachari S.N., Groundwater fluctuations and calculation of effective porosity of laterite and effective fissure porosity of basalt of the Karanja basin, India. Jour. Geol. Soc. India, 1976, 17, 117–122 Google Scholar

  • [73] Deolankar S.B., The Deccan basalts ofMaharashtra, India. Their potential as aquifers, Groundwater, 1980, 18(5), 434–437 Google Scholar

  • [74] Nemcock M., Moore J.N., Allis R., McCulloch J., Fracture Development within a Stratovolcano: the Karaha-TelagaBodas Geothermal Field, Java Volcanic Arc, Geological Society, London, Special Publications, 2004, 231, 223–242 Google Scholar

  • [75] Einsiedl F., 2005 Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers, Journal of Hydrology 2005, 312, 312–321 Google Scholar

  • [76] Bakalowicz M., Karst groundwater: a challenge for new resources, Hydrogeology Journal 2005, 13, 148–160 CrossrefGoogle Scholar

  • [77] Goldscheider N., Drew D., Worthington S., 2007. Introduction. In Goldscheider N., Drew, D. (Ed.), Methods in Karst Hydrogeology. Taylor & Francis, London, 2007, 1–8. Google Scholar

  • [78] Green T.R., Taniguchi M., Kooi H., Gurdak J.J., Allen D.M., Hiscock K.M., Treidel H., Aureli A., Beneath the surface: impacts of climate change on groundwater, Journal of Hydrology 2011, 405, 532–560 Google Scholar

  • [79] Kløve B., Bertachi C., Bertrand G., Gurdak J., Kupfersberger H., Kvoerner J., Muotka T., Preda E., Pulido-Velazquez M., Wachniew P., Climate change impacts on groundwater and dependent ecosystems. Special issue “Climatic change impact on water: overcoming data and science gaps”. Journal of Hydrology 2014, 518 (Part B), 250–266, DOI: http://dx.doi.org/10.1016/j.jhydrol. 2013.06.037 CrossrefGoogle Scholar

  • [80] Legout C., Molenat J., Aquilina L., Gascuel-Odoux C., Faucheux M., Fauvel Y., Bariac, T., Solute transfer in the unsaturated zonegroundwater continuum of a headwater catchment, Journal of Hydrology 2007, 332, 427–441 Google Scholar

  • [81] Haria H., Shand P., Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation, Hydrology and Earth System Sciences 2004, 8 (3), 334–344. CrossrefGoogle Scholar

  • [82] Birkholzer J.T., Rubin H., Daniels H., Rouvé G., Contaminant advection and spreading in a fractured permeable formation: Part 1. Parametric Evaluation and Analytical Solution, Journal of Hydrology, 1993, 144(1–4), 1–33. Google Scholar

About the article

Received: 2013-11-20

Accepted: 2015-02-22

Published Online: 2015-10-19

Citation Information: Open Geosciences, Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0037.

Export Citation

©2015 G. Bertrand et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

G. Bertrand, R. Hirata, H. Pauwels, L. Cary, E. Petelet-Giraud, E. Chatton, L. Aquilina, T. Labasque, V. Martins, S. Montenegro, J. Batista, A. Aurouet, J. Santos, R. Bertolo, G. Picot, M. Franzen, R. Hochreutener, and G. Braibant
Journal of Contaminant Hydrology, 2016, Volume 192, Page 165

Comments (0)

Please log in or register to comment.
Log in