Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Tracking potential source areas of Central European loess: examples from Tokaj (HU), Nussloch (D) and Grub (AT)

Ann-Kathrin Schatz
  • Soil Science and Geomorphology Group, Department of Geosciences, Faculty of Science, University of Tübingen, Rümelinstr. 19-23, 72072 Tübingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yue Qi
  • School of Earth and Space Sciences, University of Science and Technology of China, 230026 Hefei, China
  • State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Siebel / Jiade Wu
  • Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Austral
  • School of Earth and Space Sciences, University of Science and Technology of China, 230026 Hefei, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ludwig Zöller
Published Online: 2015-11-19 | DOI: https://doi.org/10.1515/geo-2015-0048

Abstract

There are several competing hypotheses for the origin of loess in Europe but quantitative evidence is still rare. Here, Sr-Nd isotopic and bulk elemental composition of loess from Marine Isotope Stages 2 and 3 from three study regions in Central Europe – Nussloch (Germany), Grub (Austria) and Tokaj (Hungary) - are analyzed. This study aims at examining differences and similarities of loess deposits throughout Europe, correlating loess with potential source rocks from major mountain ranges and comparing loess with floodplain sediments from main rivers as integrated samples of the drainage areas. The results show that European loess deposits are largely uniform and that sediment sources have been rather stable in the Southern and Eastern parts of Central Europe and more variable in West Central Europe. However, the methods used are not sufficient to unequivocally confirm and reject potential sediment sources but, in combination, help to identify the most likely sediment origins. While a direct correlation of loess and potential source rocks is dif- ficult, the comparison with floodplain sediments is most promising and confirms previous hypotheses. Loess from Tokaj and Grub is most likely a mix of material transported by the Danube River and sediments from the surrounding mountains. Rhine River sediments are probably the main source of loess at Nussloch.

Keywords: loess; provenance; Sr-Nd; geochemistry; dust

References

  • [1] Smalley I.J., Leach J.A., The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe - A review. Sediment. Geol., 1978, 21, 1-26. CrossrefGoogle Scholar

  • [2] Smalley I., O’Hara-Dhand K., Wint J., Machalett B., Jary Z., Jefferson I., Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quatern. Int., 2009, 198, 7-18. Google Scholar

  • [3] Buggle B., Glaser B., Zöller L., Hambach U., Markovic S., Glaser I., Gerasimenko N., Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quaternary Sci. Rev., 2008, 27, 1058-1075. CrossrefGoogle Scholar

  • [4] Thamó-Bozsó E., Kovács L.Ó., Magyari Á., Marsi I., Tracing the origin of loess in Hungary with the help of heavy mineral composition data. Quatern. Int., 2014, 319, 11-21. Google Scholar

  • [5] Újvári G., Varga A., Ramos F.C., Kovács J., Németh T., Stevens T., Evaluating the use of clay mineralogy, Sr–Nd isotopes and zircon U–Pb ages in tracking dust provenance: An example from loess of the Carpathian Basin. Chem. Geol., 2012, 304-305. Google Scholar

  • [6] Újvári G., Varga A., Balogh-Brunstad Z., Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quaternary Res., 2008, 69, 421-437. Google Scholar

  • [7] Újvári G., Varga A., Raucsik B., Kovács J., The Paks loesspaleosol sequence: A record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quatern. Int., 2014, 319, 22-37. Google Scholar

  • [8] Muhs D.R., Budahn J.R., McGeehin J.P., Bettis III E.A., Skipp G., Paces J.B., Wheeler E.A., Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. J. Aeolia, 2013, 11, 85-99. Google Scholar

  • [9] Jahn B.-M., Gallet S., Han J., Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chem. Geol., 2001, 178, 71-94. Google Scholar

  • [10] Smith J., Vance D., Kemp R.A., Archer C., Toms P., King M., Zárate M., Isotopic constraints on the source of Argentinian loess – with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth Planet. Sc. Lett., 2003, 212, 181-196. Google Scholar

  • [11] Gallet S., Jahn B.-M., Van Vliet Lanoë B., Dia A., Rossello E., Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet. Sc. Lett., 1998, 156, 157-172. Google Scholar

  • [12] Chen J., Li G., Yang J., Rao W., Lu H., Balsam W., Sun Y., Ji J., Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochim. Cosmochim. Ac., 2007, 71, 3904-3914. Google Scholar

  • [13] Sun J., Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet. Sc. Lett., 2002, 203, 845-859. Google Scholar

  • [14] Sun, J., Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: Implications for provenance change. Earth Planet. Sc. Lett., 2005, 240, 454-466, doi: 10.1016/j.epsl.2005.09.019 CrossrefGoogle Scholar

  • [15] Zhang H., Lu H., Jiang S.-Y., Vandenberghe J.,Wang S., Cosgrove R., Provenance of loess deposits in the Eastern Qinling Mountains (central China) and their implications for the paleoenvironment. Quaternary Sci. Rev., 2012, 43, 94-102. CrossrefGoogle Scholar

  • [16] Schatz A., Zech M., Buggle B., Gulyás S., Hambach U.,Markovic S.B., Sümegi P., Scholten T., The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quatern. Int., 2011, 240, 52-61. Google Scholar

  • [17] Sümegi P., Hertelendi E., Reconstruction of microenvironmental changes in the Kopasz Hill loess area at Tokaj (Hungary) between 15 and 70 ka BP. Radiocarbon, 1998, 40, 855-863. Google Scholar

  • [18] Sümegi P., Rudner Z.E., In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian Basin. Quatern. Int., 2001, 76–77, 165-176. Google Scholar

  • [19] Schatz A.K., Scholten T., Kühn P., Paleoclimate and weathering of the Tokaj (NE Hungary) loess-paleosol sequence: a comparison of geochemical weathering indices and paleoclimate parameters. Clim. Past Discuss., 2014, 10, 469-507. CrossrefGoogle Scholar

  • [20] Schatz A.-K., Buylaert J.-P., Murray A., Stevens T., Scholten T., Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quat. Geochronol., 2012, 10, 68-74. CrossrefGoogle Scholar

  • [21] Smith B.J., Wright J.S., Whalley W.B., Simulated aeolian abrasion of Pannonian sands and its implications for the origins of Hungarian loess. Earth Surf. Proc. Land., 1991, 16, 745-752. CrossrefGoogle Scholar

  • [22] Pécsi M., Negyedkor és löszkutatás (Loess and the Quaternary). Akadémiai Kiadó, Budapest, Hungary, 1993 (in Hungarian). Google Scholar

  • [23] Varga G., Similarities among the Plio–Pleistocene terrestrial aeolian dust deposits in the World and in Hungary. Quatern. Int., 2011, 234, 98-108. Google Scholar

  • [24] Stuut, J.-B., Smalley, I., O’Hara-Dhand, K., Aeolian dust in Europe: African sources and European deposits. Quatern. Int., 2009, 198, 234-245, doi: 10.1016/j.quaint.2008.10.007 CrossrefGoogle Scholar

  • [25] Sebe K., Csillag G., Ruszkiczay-Rüdiger Z., Fodor L., Thamó- Bozsó E., Müller P., Braucher R., Wind erosion under cold climate: A Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology, 2011, 134, 470-482. Google Scholar

  • [26] Markovic S.B., Bokhorst M.P., Vandenberghe J., McCoy W.D., Oches E.A., Hambach U., Gaudenyi T., Jovanovic M., Zöller L., Stevens T., Machalett B., Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. J. Quaternary Sci., 2008, 23, 73-84. Google Scholar

  • [27] Rousseau D.D., Derbyshire E., Antoine P., Hatté C., Loess Records: Europe. In: Elias S.A., Encyclopedia of Quaternary Science. Elsevier, Oxford, 2007, 1440-1456. Google Scholar

  • [28] Antl W., The inventories of archaeoligical horizons 4 and 3 and the loess section of Grub/Kranawetberg, a Gravettian site in Lower Austria. E&G Quat. Sci. J., 2013, 62, 120-126. Google Scholar

  • [29] Zöller L., Richter D., Masuth S., Wunner L., Fischer M., Antl- WeiserW., Luminescence chronology of the Grub-Kranawetberg site, Austria. E&G Quat. Sci. J., 2013, 62, 127-135. Google Scholar

  • [30] Rousseau D.D., Antoine P., Hatté C., Lang A., Zöller L., Fontugne M., Othman D.B., Luck J.M., Moine O., Labonne M., Bentaleb I., Jolly D., Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. Quaternary Sci. Rev., 2002, 21, 1577-1582. CrossrefGoogle Scholar

  • [31] Hatté C., Antoine P., Fontugne M., Rousseau D.-D., Tisnérat- Laborde N., Zöller L., New chronology and organic matter 13C paleoclimatic significance of Nußloch loess sequence (Rhine Valley, Germany). Quatern. Int., 1999, 62, 85-91. CrossrefGoogle Scholar

  • [32] Hatté C., Guiot J., Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nußloch loess sequence (Rhine Valley, Germany). Clim. Dynam., 2005, 25, 315-327. CrossrefGoogle Scholar

  • [33] Gocke M., Kuzyakov Y.,Wiesenberg G.L.B., Rhizoliths in loess – evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies. 2010, 41, 1198-1206. Google Scholar

  • [34] Moine O., Rousseau D.-D., Antoine P., Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas, 2005, 34, 363-380. CrossrefGoogle Scholar

  • [35] Antoine P., Rousseau D.-D.,MoineO., Kunesch S., Hatté C., Lang A., Tissoux H., Zöller L., Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Sci. Rev., 2009, 28, 2955- 2973. CrossrefGoogle Scholar

  • [36] Hill T.C., Geochemical evidence for weathering in NW European loess on a sub-millennial scale during the last Ice Age. PhD thesis, University of Gloucestershire, Gloucestershire, 2005. Google Scholar

  • [37] Antoine P., Rousseau D.-D., Zöller L., Lang A., Munaut A.-V., Hatté C., Fontugne M., High-resolution record of the last Interglacial– glacial cycle in the Nussloch loess–palaeosol sequences, Upper Rhine Area, Germany. Quatern. Int., 2001, 76- 77. Google Scholar

  • [38] Zech M., Rass S., Buggle B., Löscher M., Zöller L., Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quaternary Res., 2012, 78, 226-235. CrossrefGoogle Scholar

  • [39] Jacobsen S.B., Wasserburg G.J., Sm-Nd isotopic evolution of chondrites. Earth Planet. Sc. Lett., 1980, 50, 139-155. Google Scholar

  • [40] Taylor S.R., McLennan S.M., The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1985. Google Scholar

  • [41] Kemp A.J., Hawkesworth C.J., Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. In: Rudnick R.L., The Crust. Elsevier, 2003, 349-410. Google Scholar

  • [42] Feng J.-L., Zhu L.-P., Zhen X.-L., Hu Z.-G., Grain size effect on Sr and Nd isotopic compositions in eolian dust: Implications for tracing dust provenance and Nd model age. Geochem. J., 2009, 43, 123-131. CrossrefGoogle Scholar

  • [43] Rao W., Yang J., Chen J., Li G., Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China: Implications for loess provenance and monsoon evolution. Chinese Sci. Bull., 2006, 51, 1401-1412. Google Scholar

  • [44] DePaolo D.J., Neodymium Isotope Geochemistry: an Introduction. Springer, Berlin, Heidelberg, 1988. Google Scholar

  • [45] Svensson A., Biscaye P.E., Grousset F.E., Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J. Geophys. Res. Atmos., 2000, 105, 4637-4656. Google Scholar

  • [46] Mikulcic Pavlakovic S., Crnjakovic M., Tibljaš D., Šoufek M., Wacha L., Frechen M., Lackovic D., Mineralogical and geochemical characteristics of Quaternary sediments from the Island of Susak (Northern Adriatic, Croatia). Quatern. Int., 2011, 234, 32- 49. Google Scholar

  • [47] Varga A., Újvári G., Raucsik B., Tectonic versus climatic control on the evolution of a loess–paleosol sequence at Beremend, Hungary: an integrated approach based on paleoecological, clay mineralogical, and geochemical data. Quatern. Int., 2011, 240, 71-86. Google Scholar

  • [48] Kühn P., Techmer A., Weidenfeller M., Lower to middle Weichselian pedogenesis and palaeoclimate in Central Europe using combined micromorphology and geochemistry: the loesspaleosol sequence of Alsheim (Mainz Basin, Germany). Quaternary Sci. Rev., 2013, 75, 43-58. CrossrefGoogle Scholar

  • [49] Smykatz-Kloss B., Die Lößvorkommen des Pleiser Hügellandes bei Bonn und von Neustadt/Wied sowie der Picardie: Mineralogisch-geochemische und geomorphologische Charakterisierung, Verwitterungs-Beeinflussung und Herkunft der Lösse. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2003 (in German). Google Scholar

  • [50] Nehyba S., Adamová M., Faimon J., Kuchovský T., Holoubek I., Zeman J., Modern fluvial sediment provenance and pollutant tracing: a case study from the Drevnice River Basin (eastern Moravia, Czech Republic). Geol. Carpath., 2010, 61, 147-162. Google Scholar

  • [51] Schnetger B., Chemical-composition of loess from a local and worldwide view. Neues JB Miner. Monat., 1992, 1, 29-47. Google Scholar

  • [52] Parks D.A., Rendell H.M., Thermoluminescence dating and geochemistry of loessic deposits in southeast England. J. Quaternary Sci., 1992, 7, 99-107. CrossrefGoogle Scholar

  • [53] Taylor S.R., McLennan S.M., McCulloch M.T., Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Ac., 1983, 47, 1897-1905. CrossrefGoogle Scholar

  • [54] Lautridou J.P., Sommé J., Jamagne M., Sedimentological, mineralogical and geochemical characteristics of the loess of North- Western France. In: Pécsi, M., Lithology and Stratigraphy of Loess and Paleosols. Geographical Research Institute of the Hungarian Academy of Science, Budapest, 1984, 121-132. Google Scholar

  • [55] Henry P., Deloule E., Michard A., The erosion of the Alps: Nd isotopic and geochemical constraints on the sources of the peri- Alpine molasse sediments. Earth Planet. Sc. Lett., 1997, 146, 627-644. Google Scholar

  • [56] Embey-Isztin A., Downes H., James D.E., Upton B.G.J., Dobosi G., Ingram G.A., Harmon R.S., Scharbert H.G., The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J. Petrol., 1993, 34, 317-343. CrossrefGoogle Scholar

  • [57] Schaltegger U., Abrecht J., Corfu F., The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Swiss Bull. Mineral. Petrol., 2003, 83, 183-239. Google Scholar

  • [58] Seghedi I., Downes H., Szakács A., Mason P.R.D., Thirlwall M.F., Rosu E., Pécskay Z., Márton E., Panaiotu C., Neogene-Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos, 2004, 72, 117-146. CrossrefGoogle Scholar

  • [59] Siebel W., Shang C.K., Reitter E., Rohrmüller J., Breiter K., Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement: constraints from geochemistry and zircon 207Pb/206Pb chronology. J. Petrol., 2008, 49, 1853-1872. CrossrefGoogle Scholar

  • [60] Mason P.R.D., Downes H., Thirlwall M.F., Seghedi I., Szakacs A., Lowry D., Mattey D., Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and Quaternary continental margin arc, Romania. J. Petrol., 1996, 37, 927-959. CrossrefGoogle Scholar

  • [61] Klötzli U.S., Buda G., Skiöld T., Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the MecsekMountain granitoids in the Tisia Terrane (Hungary). Miner. Petrol., 2004, 81, 113-134. Google Scholar

  • [62] Drost K., Romer R.L., Linnemann U., Fatka O., Kraft P., Marek J., Nd-Sr-Pb isotopic signatures of Neoproterozoic–Early Paleozoic siliciclastic rocks in response to changing geotectonic regimes: A case study from the Barrandian area (BohemianMassif, Czech Republic). Geol. S. Am. S., 2007, 423, 191-208. Google Scholar

  • [63] Kohút M., Nabelek P.I., Geochemical and isotopic (Sr, Nd and O) constraints on sources for Variscan granites in the Western Carpathians - implications for crustal structure and tectonics. J. Geosci., 2008, 53, 307-322. Google Scholar

  • [64] Gaab A.S., Janák M., Poller U., Todt W., Alpine reworking of Ordovician protoliths in the Western Carpathians: Geochronological and geochemical data on the Muráñ Gneiss Complex, Slovakia. Lithos, 2006, 87, 261-275. Google Scholar

  • [65] Janousek V., Gerdes A., Vrána S., Finger F., Erban V., Friedl G., Braithwaite C.J.R., Low-pressure granulites of the Lišov Massif, Southern Bohemia: Viséan metamorphism of Late Devonian plutonic arc rocks. J. Petrol., 2006, 47, 705-744. Google Scholar

  • [66] Baumann A., Hofmann R., Strontium isotope systematics of hydrothermal vein minerals in deposits of West Germany. Geol. Rundsch., 1988, 77, 747-762. CrossrefGoogle Scholar

  • [67] Muhs D.R., Budahn J.R., Geochemical evidence for the origin of late Quaternary loess in central Alaska. Can. J. Earth Sci., 2006, 43, 323-337. CrossrefGoogle Scholar

  • [68] Salminen R., Batista M.J., Bidovec M., Demetriades A., De Vivo B., De VosW., Duris M., Gilucis A., Gregorauskiene V., Halamic J., Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., Locutura J.,Marsina K.,Mazreku A., O’Connor P. J., Olsson S.Å., Ottesen R.-T., Petersell V., Plant J.A., Reeder S., Salpeteur I., Sandström H., Siewers U., Steenfelt A., Tarvainen T., Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. Geological Survey of Finland, Espoo 2005. Google Scholar

  • [69] Tricca A., Stille P., Steinmann M., Kiefel B., Samuel J., Eikenberg J., Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chem. Geol., 1999, 160, 139-158. Google Scholar

  • [70] Probst A., El Gh’mari A., Aubert D., Fritz B., McNutt, R., Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, Strengbach, France. Chem. Geol., 2000, 170, 203-219. Google Scholar

  • [71] Rudnick R.L., Gao S., Composition of the Continental Crust. In: Holland H.D. and Turekian K.K., Treatise on Geochemistry. Pergamon, Oxford, 2003, 1-64. Google Scholar

  • [72] Kiss P., Gméling K., Molnár F., Pécskay Z., Geochemistry of Sarmatian volcanic rocks in the Tokaj Mts (NE Hungary) and their relationship to hydrothermal mineralization. C. Eu. Geol., 2010, 53, 377-403. Google Scholar

  • [73] Vdacný M., Vozárová A., Vozár J., Geochemistry of the Permian sandstones from the Malužiná Formation in the Malé Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting. Geol. Carpath., 2013, 64, 23-38. Google Scholar

  • [74] Varga A., Szakmány G., Árgyelán T., Józsa S., Raucsik B., Máthé Z., Complex examination of the Upper Paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary - Mineralogical, petrographic, and geochemical study. Geol. S. Am. S., 2007, 420, 221-240. Google Scholar

  • [75] Drost K., Linnemann U., McNaughton N., Fatka O., Kraft P., Gehmlich M., Tonk C., Marek J., New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int. J. Earth Sci., 2004, 93, 742-757. Google Scholar

  • [76] Jurje M., Ionescu C., Hoeck V., Kovacs M., Geochemistry of Neogene quartz andesites from the Oas and Gutâi Mountains, Eastern Carpathians (Romania): a complex magma genesis. Miner. Petrol., 2013, 108(1), 1-20. Google Scholar

  • [77] von Eynatten H., Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligocene to Miocene evolution of the Central Alps. Sedimentology, 2003, 50, 703-724. CrossrefGoogle Scholar

  • [78] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G., Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J. Geophys. Res. Atmos., 1997, 102, 26765-26781. Google Scholar

  • [79] Grousset F.E., Rognon P., Coudé-Gaussen G., Pédemay P., Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition. Palaeogr. Palaeocl., 1992, 93, 203-212. Google Scholar

  • [80] Bory A.J.M., Biscaye P.E., Svensson A., Grousset F.E., Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth Planet. Sc. Lett., 2002, 196, 123- 134. Google Scholar

  • [81] Broska I., Williams C.T., Uher P., Konecný P., Leichmann J., The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and Pbearing feldspar. Chem. Geol., 2004, 1-2, 1-15. CrossrefGoogle Scholar

About the article

Received: 2014-07-08

Accepted: 2014-12-23

Published Online: 2015-11-19


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0048.

Export Citation

©2015 A.-K. Schatz et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pascal Bertran, Morgane Liard, Luca Sitzia, and Hélène Tissoux
Journal of Quaternary Science, 2016, Volume 31, Number 8, Page e2909

Comments (0)

Please log in or register to comment.
Log in