Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

1 Issue per year


IMPACT FACTOR 2016 (Open Geosciences): 0.475

CiteScore 2016: 0.87

SCImago Journal Rank (SJR) 2016: 0.346
Source Normalized Impact per Paper (SNIP) 2016: 0.690

Open Access
Online
ISSN
2391-5447
See all formats and pricing
More options …

Cretaceous-Paleogene Boundary Clays from Spain and New Zealand: Arsenic Anomalies

Pavle I. Premović
  • Laboratory for Geochemistry, Cosmochemistry and Astrochemistry, University of Niš, P.O. Box 224, 18000 Niš, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-20 | DOI: https://doi.org/10.1515/geo-2015-0052

Abstract

Remarkably high arsenic (As) contents have been reported in numerous Cretaceous-Paleogene boundary (KPB) clays worldwide including those from Spain (at Caravaca and Agost) and New (N.) Zealand (at Woodside Creek). Two interpretations have been offered to explain this anomaly. The first one suggests that this As was generated by the combustion of fossil fuels (such as crude oil, coal or oil shales) near the Chicxulub impact site and the second interpretation proposes the post-impact combustion of the global biomass at the KPB. Both types of combustion were presumably triggered by the Chicxulub impactor. This report shows that the estimated surface densities of As in Spain and N. Zealand strongly contradict the fossil fuel hydrocarbons/biomass hypotheses. In addition, we also show that previously reported global abundances of As at KPB are greatly overestimated. The high abundances of iron (Fe) in the ejecta layers from Spain and N. Zealand lead us to a working hypothesis that a major fraction of their anomalous As was adsorbed from seawater by the Fe-oxides. These oxides were mainly derived of Fe from the vaporized carbonaceous chondrite impactor. These were originally deposited on the local (topographically high) oxic soils in Spain and N. Zealand and then laterally transported to the KPB sites by the impactinduced surface waters.

Keywords: Cretaceous-Paleogene boundary; arsenic; fossil fuel; crude oil; wildfire; iron oxide

References

  • [1] Alvarez L.W., Alvarez W., Asaro, F., Michel H.V., Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science 1980, 208, 1095–1108. Google Scholar

  • [2] Smit J., Hertogen J., An extraterrestrial event at the Cretaceous- Tertiary boundary, Nature 1980, 285, 198–200. Google Scholar

  • [3] Hildebrand A.R., Penfield G.T., Kring D.A., Pilkington M., Camargo A.Z., Jacobsen S.B., Boynton W.V., Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico, Geology 1991, 19, 867–871. CrossrefGoogle Scholar

  • [4] Shukolyukov A., Lugmair G.W., Isotopic evidence for the Cretaceous-Tertiary impactor and its type, Science 1998, 282, 927–930. Google Scholar

  • [5] Claeys P., Kiessling W., Alvarez W., Distribution of Chicxulub ejecta at the Cretaceous-Tertiary Boundary, Geol. Soc. Am. Spec. Paper 2002, 356, 55–69. Google Scholar

  • [6] Premović P.I., Experimental evidence for the global acidification of surface ocean at the Cretaceous-paleogene boundary: the biogenic calcite-poor spherule layers, Intern. J. Astrobiol. 2009, 8, 193–206. CrossrefGoogle Scholar

  • [7] Premović P.I., Distal “impact” layers and global acidification of ocean water at the Cretaceous–Paleogene boundary (KPB), Geochem. Intern. 2011, 49, 55–65. Google Scholar

  • [8] Schmitz B., Origin of microlayering in worldwide distributed Irrichmarine Cretaceous/Tertiary boundary clays, Geology 1988, 16, 1068–1072. CrossrefGoogle Scholar

  • [9] Smit J., Meteorite impact, extinctions and the Cretaceous- Tertiary Boundary, Geol. Mijnbouw 1990, 69, 187–204. Google Scholar

  • [10] Palme H., Jones A., Solar system abundances of the Elements. In: Holland H.D. and Turekian K.K. (Eds.), Treatise on Geochemistry, Elsevier, Amsterdam, 2004, 41–61. Google Scholar

  • [11] Donaldson S., Hildebrand A.R., The global fluence of iridium at the Cretaceous-Tertiary boundary. 64th Annual Meeting of the Meteoritical Society, Meteorit. Planet. Sci. 2001, 36 (supplement), Abstract, A50. Google Scholar

  • [12] Kyte F.T., Primary mineralogical and chemical characteristics of the major K/T and Late Eocene impact deposits. Proceedings of American Geophysical Union, Fall Meeting, Washington, USA, 2004, #B33C–0272. Google Scholar

  • [13] Gilmour I., Anders E., Cretaceous-Tertiary boundary event: Evidence for a short time scale, Geochim. Cosmochim. Acta 1989, 53, 503–511. CrossrefGoogle Scholar

  • [14] Toon O.B., Zahnle K., Morrison D., Turco R.P., Covey C., Environmental perturbations caused by the impacts of asteroids and comets, Rev. Geophys. 1997, 35, 41–78. CrossrefGoogle Scholar

  • [15] Pope K.O., Impact dust not the cause of the Cretaceous–Tertiary mass extinction, Geology 2002, 30, 97–102. CrossrefGoogle Scholar

  • [16] Hildebrand A.R., Boynton W.V., Geochemical evidence for atmospheric processing by the Cretaceous/Tertiary boundary Impact, Bull. Am. Astron. Soc. 1989, 21, 973. Google Scholar

  • [17] Hildebrand A.R., Wolbach W.S., 1989, Carbon and chalcophiles at a nonmarine K/T boundary: joint investigations of the Raton section, New Mexico, XX Lunar and Planetary Science Conference, Abstracts, pp. 414-415. Google Scholar

  • [18] Oflcer C.B., Drake C.L., Terminal Cretaceous environmental events, Science 1985, 227, 1161–1167. Google Scholar

  • [19] Schmitz B., Metal precipitation in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark, Geochim. Cosmochim. Acta 1985, 49, 2361–2370. CrossrefGoogle Scholar

  • [20] Schmitz B., Andersson P., Dahl J., Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark, Geochim. Cosmochim. Acta 1988, 52, 229–236. CrossrefGoogle Scholar

  • [21] Hildebrand A.R., Geochemistry and stratigraphy of the Cretaceous/ Tertiary boundary impact ejecta, Ph.D. thesis, University of Arizona, USA, 1992. Google Scholar

  • [22] Pacyna J.M., Atmospheric Emissions of Arsenic, Cadmium, Lead and Mercury from High Temperature Processes in Power Generation and Industry. In: Hutchinson, T.C., Meema, K.M. (Eds.), Lead Mercury, Cadmium and Arsenic in the Environment. Wiley, New York, 1987, 69–87. Google Scholar

  • [23] Gilmour I., Anders E., Evidence for a single impact at the Cretaceous-Tertiary boundary from trace elements. In: Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, 1988, October 20– 23, Snowbird, USA, 56–57. Google Scholar

  • [24] WolbachW.S., Lewis R.S., Anders E., Cretaceous extinctions: evidence for wildfires and search for meteoritic material, Science 1985, 230, 167–170. Google Scholar

  • [25] Wolbach W.S., Gilmour I., Anders E., Orth C.J., Brooks R.R., Global Fire at the Cretaceous-Tertiary boundary, Nature 1988, 334, 665–669. Google Scholar

  • [26] Wolbach W.S., Gilmour I., Anders E., Major wildfires at the Cretaceous-Tertiary boundary, Geol. Soc. Am. Spec. Paper 1990, 247, 391–400. Google Scholar

  • [27] Premović P.I., Soot in Cretaceous-Paleogene boundary clays worldwide: is it really derived from fossil fuel beds close to Chicxulub? Cent. Eur. J. Geosci. 2012, 4, 383–387. Google Scholar

  • [28] Belcher C.M., Impacts and Wildfires - An Analysis of the K-T Event. In: Koeberl, C., Gilmour, I. (Eds.), Biological Processes Associated with Impact Events, Springer, Berlin, 2006, 221– 243. Google Scholar

  • [29] Belcher C.M., Reigniting the Cretaceous-Palaeogene firestorm debate, Geology 2009, 37, 1147–1148. CrossrefGoogle Scholar

  • [30] Smit J., The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta, Annu. Rev. Earth Planet. Sci. 1999, 27, 75–113. Google Scholar

  • [31] Vickery A.M., Melosh H.J., Atmospheric erosion and impactor retention in large impacts: Application to mass extinctions, Geol. Soc. Am. Spec. Paper 1990, 289–300. CrossrefGoogle Scholar

  • [32] Morgan J., Lana C., Kearsley A., Coles B., Belcher C., Montanari S., Diaz-Martinez E., Barbosa A., Neumann V., Analyses of shocked quartz at the global K-P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub, Earth Planet. Sci. Lett. 2006, 251, 264–279. Google Scholar

  • [33] Molina E., Alegret L., Arenillas I., Arz J.A., The Cretaceous/ Paleogene boundary at the Agost section revisited: paleoenvironmental reconstruction and mass extinction pattern, J. Iber. Geol. 2005, 31, 135–148. Google Scholar

  • [34] Coccioni R., Galeotti S., K-T boundary extinction: Geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera, Geology 1994, 22, 779–782. CrossrefGoogle Scholar

  • [35] Brooks R.R., Reeves R.D., Xing-Hu Y., Ryan D.E., Holzbecker J., Collen J.D., Neall V.E., Lee J., Elemental anomalies at the Cretaceous–Tertiary boundary, Woodside Creek, New Zealand, Science 1984, 226, 539–542. Google Scholar

  • [36] Strong C.P., Brooks R.R., Wilson S.M., Reeves R.D., Orth C.J., Mao X., Quintana L.R., Anders E., A new Cretaceous/Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry, Geochim. Cosmochim. Acta 1987, 51, 2769–2777. CrossrefGoogle Scholar

  • [37] Koeberl C., Sharpton V.L., Schuraytz S.B., Shirey S.B., BlumJ.B., Marin L.E. 1994: Evidence for a meteoritic component in impact melt rock from the Chicxulub structure, Geochim. Cosmochim. Acta 1993, 58, 1679–1684. CrossrefGoogle Scholar

  • [38] Tagle R., Erzinger J., Hecht L., Schmitt R.T., Stoeffler D., Claeys Ph., Platinum group elements in impactites of the ICDP Chicxulub drill core Yaxcopoil-1. Are there traces of the projectile? Meteorit. Planet. Sci. 2004, 39, 1009–1016. CrossrefGoogle Scholar

  • [39] Koeberl C., Chicxulub crater, Yucatan: Tektites, impact glasses, and the geochemistry of target rocks and breccias, Geology 1994, 21, 211–214. Google Scholar

  • [40] Tuchscherer M.G., Reimold U., Koeberl C., Gibson R.L., Major and trace element characteristics of impactites from the Yaxcopoil-1 borehole, Chicxulub structure, Mexico, Meteorit. Planet. Sci. 2004, 39, 955–978. Google Scholar

  • [41] Mason B., Cosmochemistry, Part 1. Meteorites. In: Data of Geochemistry, 6th edition. U.S.G. S. Prof. Paper, 1979, 440-B-55. Google Scholar

  • [42] Garland J.A., Dry deposition of small particles to grass in field conditions. In: Pruppacher H. (Ed.), Precipation scavenging, Dry Deposition and Resuspension, Elsevier, Amsterdam, 1983, 849–858. Google Scholar

  • [43] Müller J., Invariant Properties Of The Atmospheric Aerosol, J. Aerosol Sci. 1986, 17, 277–282. CrossrefGoogle Scholar

  • [44] Schroeder W.H., Dobson M., Kane D.M., Johnson N.D., Toxic trace elements associated with airborne particulate matter: a review, J. Air Pollut. Control Assoc. 1987, 37, 1267–1285. Google Scholar

  • [45] Matschullat J., Arsenic in the geosphere: a review. Sci. Total Environ. 2000, 249, 297–312. Google Scholar

  • [46] Coles D.G., Ragaini D.C., Ondov J.M., Fisher G.L., Silberman D., Prentice B.A., Chemical studies of stack fly ash from a coal-fired power plant, Environ. Sci. Technol. 1979, 13, 455–459. CrossrefGoogle Scholar

  • [47] Rahn K.A., The Chemical Composition of the Atmospheric Aerosol. Technical Report, Graduate School of Oceanography, University of Rhode Island, Kingston, USA, 1976. Google Scholar

  • [48] CullenW.R., Reimer K.J., Arsenic speciation in the environment, Chem. Rev. 1989, 89, 713–764. CrossrefGoogle Scholar

  • [49] PiverW.T., Mobilization of arsenic by natural and industrial processes. In: Fowler B.A. (Ed.), Biological and environmental effects of arsenic, Elsevier, Amsterdam, 1983, 1–50. Google Scholar

  • [50] Eary L.E., Dhanpat R., Mattigod S.V., Ainsworth, C.C., Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements, J. Environ. Qual. 1990, 19, 202–214. CrossrefGoogle Scholar

  • [51] Harvey M.C., Brassell S.C., Belcher C.M., Montanari A., Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary, Geology 2008, 36, 355–58. CrossrefGoogle Scholar

  • [52] Grajales-Nishimura J.M., Cedillo-Pardo E., Rosales-Domínguez C., Morán-Zenteno D.J., Alvarez W., Claeys P., Ruíz-Morales J., García-Hernández J., Padilla-Avila P., Sánchez-Ríos A., Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields, Geology 2000, 28, 307–310. CrossrefGoogle Scholar

  • [53] Magoon L.B., Hudson T.L., Cook H.E., Pimienta-Tamabra(!) - a giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico, Mem. Am. Ass. Petrol. Geol. 2001, 75, 83–125. Google Scholar

  • [54] Quinby-Hunt M.S., Turekian K.K., Distribution of elements in sea water. EOS Trans, Am. Geophys. Union 1983, 64, 130–132. CrossrefGoogle Scholar

  • [55] Walsh P.R., Duce R.A., Fasching J.L., Considerations of the enrichment, sources, and flux of arsenic in the troposphere, J. Geophys. Res. 1979, 84, 1719–1726. CrossrefGoogle Scholar

  • [56] Chilvers D.C., Peterson P.J., Global cycling of arsenic. In: Hutchinson, T.C., Meema, K.M. (Eds.), Lead, mercury, cadmium and arsenic in the environment. JohnWiley and Sons, New York, 1987, 279–301. Google Scholar

  • [57] Kring D.A., Ozone-depleting chlorine and bromine produced by the Chicxulub impact event, Meteorit. Planet. Sci. 1999, 34, A67–A68. Google Scholar

  • [58] Selinus O., Alloway B., Centeno J., Finkelman R., Fuge R., Lindh U., Smedley P., Essentials of Medical Geology: Revised Edition, Springer, Berlin, 2013. Google Scholar

  • [59] Sillen L.G., The physical chemistry of sea water. In: Sears, M (Ed.), Oceanography, AAAS, Washington, DC, 1961, 549–581. Google Scholar

  • [60] Mamindy-Pajany Y., Hurel C., Marmier N., Roméo M., Arsenic adsorption onto hematite and goethite, C. R. Chimie 2009, 12, 876–881. CrossrefGoogle Scholar

  • [61] Wdowiak T.J., Armendarez L.P., Agresti D.G., Wade M.L., Wdowiak S.Y., Claeys P., Izett G., Presence of an iron-rich nanophase material in the upper layer of the Cretaceous- Tertiary boundary clay, Meteorit. Planet. Sci. 2001, 36, 123–127. CrossrefGoogle Scholar

  • [62] Bhandari N., Verma H.C., Upadhyay C., Tripathi A., Tripathi R.P., Global occurrence of magnetic and superparamagnetic iron phases in K/T Boundary clays, Geol. Soc. Am. Spec. Paper 2002, 356, 201–211. Google Scholar

About the article

Received: 2014-06-16

Accepted: 2015-03-04

Published Online: 2015-11-20


Citation Information: Open Geosciences, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0052.

Export Citation

©2015 Pavle I. Premović. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in