Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Geosciences

formerly Central European Journal of Geosciences

Editor-in-Chief: Jankowski, Piotr

IMPACT FACTOR 2018: 0.788
5-year IMPACT FACTOR: 0.899

CiteScore 2018: 1.02

SCImago Journal Rank (SJR) 2018: 0.295
Source Normalized Impact per Paper (SNIP) 2018: 0.612

Open Access
See all formats and pricing
More options …

Effects of Land Use and Management on Soil Hydraulic Properties

Ágota Horel
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eszter Tóth
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Györgyi Gelybó
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilona Kása
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zsófia Bakacsi
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Csilla Farkas
  • Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary
  • Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Frederik A. Dahls vei 20, 1430 Ås, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-24 | DOI: https://doi.org/10.1515/geo-2015-0053


Soil hydraulic properties are among the most important parameters that determine soil quality and its capability to serve the ecosystem. Land use can significantly influence soil properties, including its hydraulic conditions; however, additional factors, such as changes in climate (temperature and precipitation), can further influence the land use effects on soil hydraulic properties. In order to develop possible adaptation measures and mitigate any negative effects of land use and climatic changes, it is important to study the impact of land use and changes in land use on soil hydraulic properties. In this paper, we summarize recent studies examining the effect of land use/land cover and the associated changes in soil hydraulic properties, mainly focusing on agricultural scenarios of cultivated croplands and different tillage systems.

Keywords: Land management; Land cover change; Infiltration; Tillage; Agriculture


  • [1] Agarwal C., Green G.L., Grove M., Evans T., Schweik C., A review and assessment of land-use change models. 408 North Indiana Avenue, Bloomington, Indiana 47408 USA: Center for the Study of Institutions Population, and Environmental Change. Google Scholar

  • [2] MacDonald D., Crabtree J.R., Wiesinger G., Dax T., Stamou N., Fleury P. et al., Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response, J. Environ. Manage. 2000, 59, 47–69. CrossrefGoogle Scholar

  • [3] Kosmas C., Gerontidis S.,Marathianou M., The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece), Catena 2000, 40, 51–68. CrossrefGoogle Scholar

  • [4] Zhou X., Lin H.S., White E.A., Surface soil hydraulic properties in four soil series under different land uses and their temporal changes, Catena 2008, 73, 180–188. CrossrefGoogle Scholar

  • [5] Hamza M.A., Anderson W.K., Soil compaction in cropping systems: A review of the nature, causes and possible solutions, Soil Till. Res 2005, 82, 121–145. CrossrefGoogle Scholar

  • [6] Montgomery D.R., Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. 2007, 104, 13268–13272. CrossrefGoogle Scholar

  • [7] Ridley A.M., Slatter W.J., Helyar K.R., Cowling, A., Acidification under grazed annual and perennial grass based pastures, Aust. J. Exp. Agr. 1990, 30, 539–544. CrossrefGoogle Scholar

  • [8] Xu R.K., Coventry D.R., Farhoodi A., Schultz J.E., Soil acidification as influenced by crop rotations, stubble management, and application of nitrogenous fertiliser, Tarlee, South Australia, Aust. J. Soil Res. 2002, 40, 483–496. CrossrefGoogle Scholar

  • [9] Kimetu J.M., Lehmann J., Ngoze S.O., Mugendi D.N., Kinyangi J.M., Riha S., et al., Reversibility of soil productivity decline with organicmatter of differing quality along a degradation gradient, Ecosystems 2008, 11, 726–739. CrossrefGoogle Scholar

  • [10] Chesworth W. Encyclopedia of soil science. The Netherlands: Springer, Dordrecht, 2008. Google Scholar

  • [11] Garcia-Ruiz J.M., Lasanta T., Ruiz-Flano P., Ortigosa L., White S., Gonzalez C.,Marti C., Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees, Landscape Ecol. 1996, 11, 267–277. CrossrefGoogle Scholar

  • [12] Targulian V.O., Krasilnikov P.V., Soil system and pedogenic processes: Self-organization, time scales, and environmental significance, Catena 2007, 71, 373–381. CrossrefGoogle Scholar

  • [13] Mendelsohn R., Dinar A., Climate, water, and agriculture, Land Econ. 2003, 79, 328–341. Google Scholar

  • [14] Merrill S.D., Tanaka D.L., Krupinsky J.M., Liebig M.A., Hanson J.D., Soil water depletion and recharge under ten crop species and applications to the principles of dynamic cropping systems, Agron. J. 2007, 99, 931–938. CrossrefGoogle Scholar

  • [15] Reubens B., Poesen J., Danjon F., Geudens G.,Muys B., The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review, Trees 2007, 21, 385–402. CrossrefGoogle Scholar

  • [16] Zheng F.L., Effect of vegetation changes on soil erosion on the Loess Plateau, Pedosphere 2006, 16, 420–427. CrossrefGoogle Scholar

  • [17] Gyssels G., Poesen J., Bochet E., Li, Y., Impact of plant roots on the resistance of soils to erosion by water: a review, Prog. Phys. Geog. 2005, 29, 189–217. CrossrefGoogle Scholar

  • [18] Hahm W.J., Riebe C.S., Lukens C.E., Araki S., Bedrock composition regulates mountain ecosystems and landscape evolution, P. Natl. Acad. Sci. 2014, 111, 3338–3343. CrossrefGoogle Scholar

  • [19] Zhou P., Luukkanen O., Tokola T., Nieminen J., Effect of vegetation cover on soil erosion in a mountainous watershed, Catena 2008, 75, 319–325. CrossrefGoogle Scholar

  • [20] Cerda A., Doerr S.H., The influence of vegetation recovery on soil hydrology and erodibility following fire: an eleven-year investigation, Int. J. Wildland Fire. 2005, 14, 423–437. CrossrefGoogle Scholar

  • [21] Koulouri M., Giourga C., Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands, Catena 2007, 69, 274–281. CrossrefGoogle Scholar

  • [22] Ludwig J.A., Wilcox B.P., Breshears D.D., Tongway D.J., Imeson A.C., Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes, Ecology 2005, 86, 288–297. CrossrefGoogle Scholar

  • [23] Mahe G., Paturel J.E., Servat E., Conway D., Dezetter A., The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso, J. Hydrol. 2005, 300, 33–43. CrossrefGoogle Scholar

  • [24] Barto E.K., Alt F., Oelmann Y., Wilcke W., Rillig M.C., Contributions of biotic and abiotic factors to soil aggregation across a land use gradient, Soil Biol. Biochem. 2010, 42, 2316–2324. CrossrefGoogle Scholar

  • [25] Grant P.F., Nickling W.G., Direct field measurement of wind drag on vegetation for application to windbreak design and modelling, Land Degrad. Dev. 1998, 9, 57–66. CrossrefGoogle Scholar

  • [26] HuW., Shao M.,Wang Q., Fan J., Horton R., Temporal changes of soil hydraulic properties under different land uses, Geoderma 2009, 149, 355–366. Google Scholar

  • [27] Novak V., Lichner L., Zhang B., Knava K., The impact of heating on the hydraulic properties of soils sampled under different plant cover, Biologia 2009, 64, 483–486. Google Scholar

  • [28] Singh R.B., Shi C., Advances in observation and estimation of land use impacts on climate changes: improved data, upgraded models, and case studies, Adv. Met. 2014, 2014, 1–7. Google Scholar

  • [29] Lean J.L., Rind D.H., How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 2009, 36, LI5708. Google Scholar

  • [30] Bronick C.J., Lal R., Soil structure and management: a review, Geoderma 2005, 124, 3–22. CrossrefGoogle Scholar

  • [31] Rose D.A., Lal R., Shukla M.K., Principles of Soil Physics.Marcel Dekker, New York, 2005. Google Scholar

  • [32] U.S. National Committee for Rock Mechanics. Panel on Conceptual Models of Flowand Transport in the Fractured Vadose Zone. Washington, D.C: National Academy Press. 2001. Google Scholar

  • [33] Rawls W.J., Pachepsky Y.A., Ritchie J.C., Sobecki T.M., Bloodworth H., Effect of soil organic carbon on soil water retention, Geoderma 2003, 116, 61–76. CrossrefGoogle Scholar

  • [34] Eagleson P.S., Climate, soil, and vegetation. Introduction to water balance dynamics, Water Resour. Res. 1978, 14, 705–712. CrossrefGoogle Scholar

  • [35] Peck A.J., Luxmoore R.J., Stolzy J.L., Effects of spatial variability of soil hydraulic properties in water budget modeling, Water Resour. Res. 1977, 13, 348–354. CrossrefGoogle Scholar

  • [36] Richards L.A., Capillary conduction of liquids through porous mediums, Physics 1931, 1, 318–333. CrossrefGoogle Scholar

  • [37] Durner W., Lipsius K., Chapter 75: Determining soil hydraulic properties. In: Anderson M.G., McDonnell J.J (Eds.), Encyclopedia of Hydrological Sciences. John Wiley & Sons Ltd., Chichester, 2005, 1021–1144. Google Scholar

  • [38] Reynolds W.D., Drury C.F., Yang X.M., Fox C.A., Tan C.S., Zhang T.Q., Land management effects on the near-surface physical quality of a clay loam soil, Soil Till. Res. 2007, 96, 316–330. CrossrefGoogle Scholar

  • [39] Topp G.C., ReynoldsW.D., Cook F.J., Kirby J.M., Carter M.R. Physical attributes of soil quality In: Gregorich E.G., Carter M.R. (Eds.), Soil Quality for Crop Production and Ecosystem Health. Developments in Soil Science. Elsevier, New York, NY, USA, 1997, 21–58. Google Scholar

  • [40] Horel A., Schiewer S., Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils, Cold Reg. Sci. Technol. 2009, 58, 113–119. CrossrefGoogle Scholar

  • [41] Molina A.J., Latron J., Rubio C.M., Gallart F., Llorens P., Spatiotemporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content, J. Hydrol. 2014, 516, 182–192. Google Scholar

  • [42] Pachepsky Y.A., Timlin D.J., Rawls W.J., Soil water retention as related to topographic variables, Soil Sci. Soc. Am. J. 2001, 65, 1787–1795. CrossrefGoogle Scholar

  • [43] Garcia-Estringana P., Latron J., Llorens P., Gallart F., Spatial and temporal dynamics of soil moisture in a Mediterranean mountain area (Vallcebre, NE Spain), Ecohydrology 2012, 6, 741–753. Google Scholar

  • [44] Li S., Lobb D.A., McConkey B.G., The impacts of land use on the risk of soil erosion on agricultural land in Canada. In: World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 2010. Google Scholar

  • [45] Lipiec J., Kus J., Slowinska-Jurkiewicz A., Nosalewicz A., Soil porosity and water infiltration as influenced by tillage methods, Soil Till. Res. 2006, 89, 210–220. CrossrefGoogle Scholar

  • [46] Stolte J., van Venrooij B., Zhang G., Trouwborst K.O., Liu G., Ritsema C.J., Hessel R., Land-use induced spatial heterogeneity of soil hydraulic properties on the Loess Plateau in China, Catena 2003, 54, 59–75. CrossrefGoogle Scholar

  • [47] Zimmermann B., Elsenbeer H., Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance, J. Hydrol. 2008, 361, 78–95. Google Scholar

  • [48] Zimmermann B., Elsenbeer H., De Moraes J.M., The influence of land-use changes on soil hydraulic properties: Implications for runoff generation, Forest Ecol. Manage. 2006, 222, 29–38. Google Scholar

  • [49] Li X.G., Li F.M., Zed R., Zhan Z.Y., Singh B., Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland, Geoderma 2007, 139, 98– 105. CrossrefGoogle Scholar

  • [50] Kodesova R., Jirku V., Kodes V., Muhlhanselova M., Nikodem A., Zigova A., Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland, Soil Till. Res. 2011, 111, 154–161. CrossrefGoogle Scholar

  • [51] Farkas C., Hagyo A., Toth E., Szabo J., Nemeth T., Evaluation of the soil water regime of an irrigated maize field, Acta Agronomica Hungarica 2005, 53, 161–175. Google Scholar

  • [52] Smucker A.J.M., Erickson A.E., Tillage and compactive modifications of gaseous flow and soil aeration, NATO Adv. Sci. I. E-App. 1989, 172, 205–221. Google Scholar

  • [53] Cameira M.R., Fernando R.M., Pereira L.S., Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal, Soil Till. Res. 2003, 70, 131–140. CrossrefGoogle Scholar

  • [54] McDowell L.L., McGregor K.C., Plant nutrient losses in runoff from conservation tillage corn, Soil Till. Res. 1984, 4, 79–91. CrossrefGoogle Scholar

  • [55] Horel A., Schiewer S., Influence of inocula with prior hydrocarbon exposure on biodegradation rates of diesel, synthetic diesel, and fish-biodiesel in soil, Chemosphere 2014, 109, 150– 156. CrossrefGoogle Scholar

  • [56] Kodesova R., Kodes V., Zigova A., Simunek J., Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties, Biologia 2006, 61, Suppl. 19, S339–S343. Google Scholar

  • [57] Glab T., Kacorzyk P., Zaleski T., Effect of land management in mountainous regions on physical quality of sandy loam Haplic Cambisol soil, Geoderma 2009, 149, 298–304. CrossrefGoogle Scholar

  • [58] Horel A., Lichner L., Alaoui A., Czachor H., Nagy V., Toth E., Transport of iodide in structured clay-loamsoil undermaize during irrigation experiments analyzed using HYDRUS model, Biologia 2014, 69, 1531–1538. Google Scholar

  • [59] Farkas C., Beldring S., Bechmann M., Deelstra J. Soil erosion and phosphorus losses under variable land use as simulated by the INCA-P model, Soil Use Manage 2013, 29, 124–137. Google Scholar

  • [60] Holko L., Fleischer P., Novak V., Kostka Z., Bicarova S., Novak J., Hydrological effects of a large scale windfall degradation in the high Tatra Mountains, Slovakia. In: Krecek J., Haigh M.J., Hofer T., Kubin E. (Eds.), Management of Mountain Watersheds. The Netherlands: Springer, Netherlands, 2012, 164–179. Google Scholar

  • [61] Molinillo M., Lasanta T., Garcia-Ruiz J.M., Managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees, Environ.Manage. 1997, 21, 587–598. CrossrefGoogle Scholar

  • [62] Garcia-Ruiz J.M., Lasanta T., Ortigosa L., Ruiz-Flano P., Marti C., Gonzalez C., Sediment yield under different land uses in the Spanish Pyrenees, Mount. Res. Dev. 1995, 15, 229–240. CrossrefGoogle Scholar

  • [63] Whiteley G.M., Dexter A.R., Root development and growth of oilseed, wheat and pea crops on tilled and non-tilled soils, Soil Till. Res. 1982, 2, 379–393. CrossrefGoogle Scholar

  • [64] Radke J.K., Andrews R.W., Janke R.R., Peters S.E., Low input cropping systems and eflciency of water and nitrogen use. In: Hargrove W.L. (Ed.), Cropping systems for eflcient use of water and nitrogen,Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1988, 193–218. Google Scholar

  • [65] Ujj A., Soil conditions and phenological studies on a brown forest soil, Növénytermelés 2004, 53, 263–272. Google Scholar

  • [66] Calvino P.A., Sadras V.O., Interannual variation in soybean yield: interaction among rainfall, soil depth and crop management, Field Crops Res. 1999, 237–246. Google Scholar

  • [67] Sharpley A.N., Depth of surface soil-runoff interaction as affected by rainfall, soil slope, and management, Soil Sci. Soc. Am. J. 1984, 49, 1010–1015. Google Scholar

  • [68] Locke M.A., Reddy K.N., Zablotowicz R.M., Weed management in conservation crop production systems, Weed Biol. Manag. 2002, 2, 123–132. Google Scholar

  • [69] Wheater H., Evans E., Land use, water management and future flood risk, Land Use Policy, 2009, 26S, S251–S264. Google Scholar

  • [70] FAO., Manual on integrated soil management and conservation practices, FAO Land Water Bull., 2000d, 8, 214. Google Scholar

  • [71] Leys A., Govers G., Gillijns K., Berckmoes E., Takken I., Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: The role of residue cover, J. Hydrol. 2010, 390, 143–154. Google Scholar

  • [72] Armand R., Bockstaller C., Auzet A.-V., Van Dijk P., Runoff generation related to intra-field soil surface characteristics variability Application to conservation tillage context, Soil Till. Res. 2009, 102, 27–37. CrossrefGoogle Scholar

  • [73] Salinas-Garcia J.R., Matocha J.E., Hons F.M., Long-term tillage and nitrogen fertilization effects on soil properties of an Alfisol under dryland corn/cotton production, Soil Till. Res. 1997, 42, 79–93. CrossrefGoogle Scholar

  • [74] Peigne J., Ball B.C., Roger-Estrade J., David C., Is conservation tillage suitable for organic farming? A review, Soil Use Manage. 2007, 23, 129–144. Google Scholar

  • [75] Gliessman S.R., Agroecology: ecological processes in sustainable agricuture. Lewis Publishers, London, 1998. Google Scholar

  • [76] Fuentes J.P., Flury M., Bezdicek D.F., Hydraulic properties in a silt loam soil under natural prairie, conventional till, and no-till, Soil Sci. Soc. Am. J. 2004, 68, 1679–1688. CrossrefGoogle Scholar

  • [77] Alletto L., Coquet Y., Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems, Geoderma 2009, 152, 85–94. CrossrefGoogle Scholar

  • [78] Korsunskaia L.P., Farkas Cs., Seasonal variability of soil water retention curves. In: Józefaciuk G. (Ed.), Physics, chemistry and biogeochemistry in soil and plant studies. Multi-Authors Work, Institute of Agrophysics, Centre of Excellence for Applied Physics in Sustainable Agriculture, Agrophysics, Lublin, Poland, 2004, 78–82. Google Scholar

  • [79] Ball B.C., Chesire M.V., Robertson E.A.G., Hunter E.A., Carbohydrate composition in relation to structural stability, compactibility and plasticity of two soils in a long-term experiment, Soil Till. Res. 1996, 39, 143–160. CrossrefGoogle Scholar

  • [80] Lampurlanes J., Cantero-Martinez C., Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions, Soil Till. Res. 2006, 85, 13–26. CrossrefGoogle Scholar

  • [81] Lampurlanes J., Angas P., Cantero-Martinez C., Tillage effects on water storage during fallow, and on barley root growth and yield in two contrasting soils of the semi-arid Segarra region in Spain, Soil Till. Res. 2002, 65, 207–220. CrossrefGoogle Scholar

  • [82] Slawinski C., Cymerman J., Witkowska-Walczak B., Lamorski K., Impact of diverse tillage on soil moisture dynamics, Int. Agrophys. 2012, 26, 301–309. Google Scholar

  • [83] Alaoui A., Goetz B., Dye tracer and infiltration experiments to investigate macropore flow, Geoderma 2008, 144, 279–286. CrossrefGoogle Scholar

  • [84] Dexter A.R., Soil physical quality. Part I. Theory, effects of soil texture, density, and organicmatter, and effects on root growth, Geoderma 2004, 120, 201–214. CrossrefGoogle Scholar

  • [85] Bhattacharyya R., Prakash V., Kundu S., Gupta H.S., Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas, Soil Till. Res. 2006, 86, 129–140. CrossrefGoogle Scholar

  • [86] Pilas I., Feger K.-H., Vilhar U.,Wahren A.,Multidimensionality of scales and approaches for forest-water interactions. In: Bredemeier M., Cohen S., Godbold D.L., Lode E., Pichler V., Schleppi P. (Eds.), Forest management and the water cycle: An ecosystembased approach. Heidelberg: Springer, 2011, 351–380. Google Scholar

  • [87] Farkas C., Birkas M., Varallyay G., Soil tillage systems to reduce the harmful effect of extreme weather and hydrological situations, Biologia 2009, 64, 624–628. Google Scholar

  • [88] Beare M.H., Hendrix P.F., Coleman D.C., Water-stable aggregates and organic matter fractions in conventional and notillage soils, Soil Sci. Soc. Am. J. 1994, 58, 777–786. CrossrefGoogle Scholar

  • [89] Dexter A.R., Birkas M., Prediction of the soil structures produced by tillage, Soil Till. Res. 2004, 79, 233–238. CrossrefGoogle Scholar

  • [90] Watts C.W., Dexter A.R., Longstaff D.J., An assessment of the vulnerability of soil structure to destabilisation during tillage. Part I. A laboratory test, Soil Till. Res. 1996, 37, 161–174. CrossrefGoogle Scholar

  • [91] Pagliai M., Voignozzi N., Pellegrini S., Soil structure and the effect of management practices, Soil Till. Res. 2004, 79, 131–143. CrossrefGoogle Scholar

  • [92] Cook G.D., So H.B., Dalal R.C., Structural degradation of two Vertisols under continuous cultivation, Soil Till. Res. 1992, 24, 47– 64. CrossrefGoogle Scholar

  • [93] Lal R., Soil degradation by erosion, Land Degrad. Dev. 2000, 12, 519–539. Google Scholar

  • [94] Wildenschild D., Hopmans J.W., Vaz C., Rivers M.L., Rikard D., Christensen B.S., Using X-ray computed micro tomography in hydrology: systems, resolution and limitations, J. Hydrol. 2002, 267, 285–297. Google Scholar

  • [95] Deurer M., Grinev D., Young I., Clothier B.E., Müller K., The impact of soil carbonmanagement on soilmacro-pore structure: A comparison of two apple orchard systems in New Zealand, Eur. J. Soil Sci. 2009, 60, 945–955. CrossrefGoogle Scholar

  • [96] Luo L., Lin H., Li S., Quantification of 3-D macropore networks in different soil types and land using computed tomography, J. Hydrol., 2010a, 393, 53–64. Google Scholar

  • [97] Schlüter S., Weller U., Vogel H.-J., Soil structure development including seasonal dynamics in a long-term fertilization experiment, J. Plant Nutr. Soil Sci. 2011, 174, 395–403. CrossrefGoogle Scholar

  • [98] Luo L.F., Lin H., Schmidt J., Quantitative relationships between soil macropore characteristics and preferential flow and transport, Soil Sci. Soc. Am. J., 2010b, 74, 1929–1937. Google Scholar

  • [99] Kurilov P.I., Changes in soil physical properties due to anthropogenic influence. 2006. (In Russian.) Available At: (Http:// Www.Spishy.Ru/Referats/28/16444). Google Scholar

  • [100] Halabuk A., Influence of different vegetation types on saturated hydraulic conductivity in alluvial topsoil, Biologia 2006, 61, Suppl. 19: S266–S269. Google Scholar

About the article

Received: 2014-10-24

Accepted: 2015-04-23

Published Online: 2015-11-24

Citation Information: Open Geosciences, Volume 7, Issue 1, ISSN (Online) 2391-5447, DOI: https://doi.org/10.1515/geo-2015-0053.

Export Citation

©2015 Á. Horel et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Miroslav Fér, Radka Kodešová, Soňa Hroníková, and Antonín Nikodem
Biologia, 2019
Anthony Stewart, Adam Coble, Alexandra R. Contosta, Joseph N. Orefice, Richard G. Smith, and Heidi Asbjornsen
Agroforestry Systems, 2019
Janis Kreiselmeier, Parvathy Chandrasekhar, Thomas Weninger, Andreas Schwen, Stefan Julich, Karl-Heinz Feger, and Kai Schwärzel
Soil and Tillage Research, 2019, Volume 192, Page 222
Artemi Cerdà, Oren Ackermann, Enric Terol, and Jesús Rodrigo-Comino
Water, 2019, Volume 11, Number 4, Page 824
Parvathy Chandrasekhar, Janis Kreiselmeier, Andreas Schwen, Thomas Weninger, Stefan Julich, Karl-Heinz Feger, and Kai Schwärzel
Water, 2018, Volume 10, Number 12, Page 1862
Ganga Ram Maharjan, Anne-Katrin Prescher, Claas Nendel, Frank Ewert, Cho Miltin Mboh, Thomas Gaiser, and Sabine J. Seidel
Soil and Tillage Research, 2018, Volume 180, Page 210

Comments (0)

Please log in or register to comment.
Log in