1

Lee S., Ryu, J.H., Won J.S., Park H.J., Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Eng. Geol., 2004, 71, 289-302. Google Scholar

2

Yalcin A., GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations, Catena, 2008, 72, 1-12.Google Scholar

3

Shou K., Chen Y., Liu H., Hazard analysis of Li-shan landslide in Taiwan, Geomorphology, 2009, 103, 143-153.Google Scholar

4

Tangestani M.H., A comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS: An experience from Zagros Mountains, SW Iran, J. Asian Earth Sci., 2009, 35, 66-73.Google Scholar

5

Yilmaz I., A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks, Bull. Eng. Geol. Environ., 2009, 68, 297-306.Google Scholar

6

Pradhan B., Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling, Environ. Ecol. Stat., 2000, 18, 471-493.Google Scholar

7

Pradhan B., Lee S., Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia, Landslides, 2000, 7, 13-30.Google Scholar

8

Li Y., Chen G., Tang C., Zhou G., Zheng L., Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network, Nat. Hazards Earth Sys, 2012, 12, 2719-2729.Google Scholar

9

Xu C., Xu X., Dai F., Saraf A.K., Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China, Comput. Geosci., 2012, 46, 317-329.Google Scholar

10

Ramakrishnan D., Singh T.N., Verma A.K., Gulati A., Tiwari K.C., Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India, Nat. Hazards, 2013, 65, 315-330.Google Scholar

11

Bui D.T., Pradhan B., Lofman O., Revhaug I., Dick O.B., Regional prediction of landslide hazard using probability analysis of intense rainfall in the HoaBinh province, Vietnam, Nat. Hazards, 2013, 66, 707-730. Google Scholar

12

Lee S., Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data, Int. J. Remote Sens., 2005, 26, 1477-1491. Google Scholar

13

Lee S., Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea, Earth Surf. Processes, 2007, 32, 2133-2148.Google Scholar

14

Bai S., Lü G., Wang J., Zhou P., Ding L., GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China, Environ. Earth Sci., 2000, 62, 139-149.Google Scholar

15

Nandi A., Shakoor A., A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Eng. Geol., 2000, 110, 11-20.Google Scholar

16

Oh H.J., Lee S., Cross-validation of logistic regression model for landslide susceptibility mapping at Geneoung areas, Korea, Disaster Advances, 2000, 3, 44-55. Google Scholar

17

Pradhan, B., Lee S., Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models, Environ. Earth Sci., 2000, 60, 1037-1054.Google Scholar

18

Yalcin A., Reis S., Aydinoglu A.C., Yomralioglu T., A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey, Catena, 2011, 85, 274-287.Google Scholar

19

Akgun A., Kincal C., Pradhan B., Application of remote sensing data and GIS for landslide risk assessmentas an environmental threat to Izmir city (west Turkey), Environ. Monit. Asses., 2012, 184, 5453-5470.Google Scholar

20

Bai S., Wang J., Zhang Z., Cheng C., Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China, Catena, 2012, 99, 18-25.Google Scholar

21

Dahal R.K., Hasegawa S., Bhandary N.P., Poudel P.P., Nonomura, A., Yatabe, R., A replication of landslide hazard mapping at catchment scale, Geomatics, Nat. Hazards Risk J., 2012, 3, 161-192.Google Scholar

22

Lepore C., Kamal S.A., Shanahan P., Bras R.L., Rainfall-induced landslide susceptibility zonation of Puerto Rico, Environ. Earth Sci., 2012, 66, 1667-1681.Google Scholar

23

Miller S., Degg M., Landslide susceptibility mapping in NorthEast Wales, Geomatics, Nat. Hazards Risk J., 2012, 3, 133-159.Google Scholar

24

Devkota K.C., Regmi A.D., Pourghasemi H.R., Yoshida K., Pradhan B., Ryu I.C., Dhital M.R., Althuwaynee, O.F., Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya, Nat. Hazards, 2013, 65, 135-165.Google Scholar

25

Ayalew, L., Yamagishi, H., The application of GIS-based logistic regression for landslide susceptibility mapping in the KakudaYahiko Mountains, Central Japan, Geomorphology, 2005, 65, 15-31. Google Scholar

26

Yilmaz I., Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environ. Earth Sci., 2000, 61, 821-836.Google Scholar

27

Akgun A., A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at šzmir, Turkey, Landslide, 2012, 9, 93-106. Google Scholar

28

Lee S., Min K., Statistical analysis of landslide susceptibility at Yongin, Korea, Environ. Geol., 2001, 40, 1095-1113.Google Scholar

29

Lee S., Pradhan B., Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia, J. Earth System Scim., 2006, 115, 661-672.Google Scholar

30

Oh H.J., Lee S., Chotikasathien, W., Kim, C., Kwon, J., Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand, Environ. Geol., 2009, 57, 641-651. Google Scholar

31

Ozdemir A., Landslide susceptibility mapping of vicinity of Yaka Landslide (Gelendost, Turkey) using conditional probability approach in GIS, Environ. Geol., 2009, 57, 1675-1686.Google Scholar

32

Vahidnia M.H., Alesheikh A.A., Alimohammadi A., Hosseinali F., Landslide Hazard Zonation Using Quantitative Methods in GIS, Int. J. Civil Eng., 2009, 7, 176-189.Google Scholar

33

Regmi N.R., Giardino J.R., Vitek J.D., Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA, Geomorphology, 2000, 115, 172-187.Google Scholar

34

Yilmaz I., The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks, Environ. Earth Sci., 2000, 60, 505-519.Google Scholar

35

Oh H.J., Park N.W., Lee S.S., Lee S., Extraction of landslide-related factors from ASTER imagery andits application to landslide susceptibility mapping, Int. J. Remote Sens., 2012, 33, 3211-3231.Google Scholar

36

Pradhan B., Chaudhari A., Adinarayana J., Buchroithner M.F., Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia, Environ. Monit. Asses., 2012, 184, 715-727.Google Scholar

37

Choi J., Oh H.J., Lee H.J., Lee C., Lee S., Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS, Eng. Geol., 2012, 124, 12-23.Google Scholar

38

Youssef A. M., Pradhan B., Jebur M. N., Ei-Harbi H. M., Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia, Environ. Earth Sci., 2014, doi: 10.1007/s12665-014-3661-3 CrossrefGoogle Scholar

39

Marco B., Accuracy of radar rainfall estimates for stream flow simulation, J. Hydrol., 2002, 267, 26-39. Google Scholar

40

Herr H.D., Krzysztofowicz R., Generic probability distribution of rainfall in space: the bivariate model, J. Hydrol., 2005, 306, 234-263.Google Scholar

41

Cabus P., River flow prediction through rainfall-runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium, Agr. Water Manag., 2008, 95, 859-868. Google Scholar

42

Jaiswal P., Van Westen C.J., Jetten V., Quantitative estimation of landslide risk from rapid debris slides on natural slopes in the Nilgiri hills, India, Nat. Hazards. Earth System. Sci., 2011, 11, 1723-1743. Google Scholar

43

Paola J.D., Schowengerdt R.A., A review and analysis of back propagation neural networks for classification of remotely sensed multi-spectral imagery, Int. J. Remote Sens., 1995, 16, 3033-3058. Google Scholar

44

Jebur M. N., Pradhan B., Tehrany M. S., Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale, Remote Sens. Environ., 2014, 152, 150-165. Google Scholar

45

Jebur M., Pradhan B., Tehrany M., Manifestation of LiDAR-Derived Parameters in the Spatial Prediction of Landslides Using Novel Ensemble Evidential Belief Functions and Support Vector Machine Models in GIS, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, doi: 10.1109/JSTARS.2014.2341276CrossrefGoogle Scholar

46

Zawadzki J., Kędzior M. A., Statistical analysis of soil moisture content changes in Central Europe using GLDAS database over three past decades, Centr. Eur. J. Geosci., 2014, 6, 344-353. Google Scholar

47

Zawadzki, J., Przeździecki, K., Metoda wyznaczania wska[zacute]nika suszy TVDI i jego analiza statystyczna na przykładzie Kampinoskiego Parku Narodowego, Acta Astrophys., 2013, 20, 495-507. Google Scholar

48

Hines J.W., Fuzzy and neural approaches in engineering, John Wiley and Sons, Inc., New York, 1997. Google Scholar

49

Dai F.C., Lee C.F., Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 2002, 42, 213-228. Google Scholar

50

Hosmer Jr D.W., Lemeshow S., Applied Logistic Regression, Wiley & Sons, Inc. 2013, 45-52.Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.