[1]

Fienen M. N., The Three-Point Problem, Vector Analysis and Extension to the N-Point Problem. Journal of Geoscience Education, 2005, 53, 257–63 Google Scholar

[2]

De Paor D.G., A Modern Solution to the Classical Three-Point Problem. Journal of Geological Education, 1991, 1, 322–24 Google Scholar

[3]

Vacher H. L., The Three-Point Problem in the Context of Elementary Vector Analysis. Journal of Geological Education, 1989, 8, 280–87 Google Scholar

[4]

Haneberg W. C., A Lagrangian interpolation method for three-point problems. Journal of Structural Geology, 1990, 12, 945-947, https://doi.org/10.1016/0191-8141(90)90069-B

[5]

Ragan D. M., Structural Geology: An Introduction to Geometrical Techniques. Cambridge University Press, 2009 Google Scholar

[6]

Groshong R. H., 3-D Structural Geology. Springer-Verlag Berlin Heidelberg, 2006 Google Scholar

[7]

Feng Q., Sjögren P., Stephansson O., Jing L., Measuring fracture orientation at exposed rock faces by using a non-reflector total station. Eng. Geol., 2001, 59, 133-146, https://dol.org/10.1016/S0013-7952(00)00070-3

[8]

Xu X., Bhattacharya J. B., Davies R. K., Aiken C. L., Digital geologic mapping of the Ferron Sandstone, Muddy Creek, Utah, with GPS and reflectorless laser rangefinders. GPS Solutions, 2001, 5, 15-23, https://doi.org/10.1007/PL00012872

[9]

Cracknell M. J., Roach M., Green D., Lucieer A., Estimating bedding orientation from high-resolution digital elevation models. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 2949-2959, https://doi.org/10.1109/TGRS.2012.2217502

[10]

Banerjee S., Mitra S., Remote surface mapping using orthophotos and geologic maps draped over digital elevation models: Application to the Sheep Mountain anticline, Wyoming. AAPG bulletin, 2004, 88, 1227-1237 Google Scholar

[11]

Martinez-Torres L. M., Lopetegui A., Eguiluz L., Automatic resolution of the three-points geological problem. Computers & Geosciences, 2012, 42, 200-202, https://doi.org/10.1016/j.cageo.2011.08.031

[12]

Hasbargen L. E., A test of the three-point vector method to determine strike and dip utilizing digital aerial imagery and topography. Geological Society of America Special Papers, 2012, 492, 199-208, http://dx.doi.org/10.1130/2012.2492(14)

[13]

McCaffrey K. J. W., Jones R. R., Holdsworth R. E., Wilson R. W., Clegg P., Imber J., Holliman N., Trinks I., Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 2005, 162, 927-938, https://doi.org/10.1144/0016-764905-017

[14]

Bistacchi A., Griffith W. A., Smith S. A., Di Toro G., Jones R., Nielsen S., Fault roughness at seismogenic depths from LIDAR and photogrammetric analysis. Pure and Applied Geophysics, 2011, 168, 2345-2363, https://doi.org/10.1007/s00024-011-0301-7

[15]

Assali P., Grussenmeyer P., Villemin T., Pollet N., Viguier F., Solid images for geostructural mapping and key block modeling of rock discontinuities. Computers & Geosciences, 2016, 89, 21-31, https://doi.org/10.1016/j.cageo.2016.01.002

[16]

Dewez T. J., Girardeau-Montaut D., Allanic C., Rohmer J., Facets: A CloudCompare plugin to extract geological planes from unstructured 3D point clouds. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 41, 799-804, https://doi.org/10.5194/isprs-archives-XLI-B5-799-2016

[17]

Scheidegger A. E., On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data. US Geological Survey Professional Paper, 1965, 525, 164-167 Google Scholar

[18]

Watson G. S., Equatorial distributions on a sphere. Biometrika, 1965, 52, 193-201, https://doi.org/10.1093/biomet/52.1-2.193

[19]

Woodcock N. H., Specification of fabric shapes using an eigenvalue method. Geological Society of America Bulletin, 1977, 88, 1231-1236, https://doi.org/10.1130/0016-7606(1977)88%3C1231:SOFSUA%3E2.0.CO;2

[20]

Fernández O., Obtaining a Best Fitting Plane through 3D Georeferenced Data. Journal of Structural Geology, 2005, 27, 855–58, https://doi.org/10.1016/j.jsg.2004.12.004

[21]

Jones R. R., Pearce M. A., Jacquemyn C., Watson F. E., Robust best-fit planes from geospatial data. Geosphere, 2016, 12, 196-202, https://doi.org/10.1130/GES01247.1

[22]

Goldberg D., What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys (CSUR), 1991, 23, 5-48, https://doi.org/10.1145/103162.103163

[23]

Mei G., Tipper J. C., Xu N., Numerical robustness in geometric computation: An expository summary. Applied Mathematics & Information Sciences, 2014, 8, 2717, http://dx.doi.org/10.12785/amis/080607

[24]

Seers T. D., Hodgetts D., Probabilistic constraints on structural lineament best fit plane precision obtained through numerical analysis. Journal of Structural Geology, 2016, 82, 37-47, https://doi.org/10.1016/j.jsg.2015.11.004

[25]

de Berg M., Cheong O., van Kreveld M., Overmars M., Computational Geometry. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2008 Google Scholar

[26]

Lipski W., Combinatorics for programmers. Wydawnictwa Naukowo-Techniczne, Warsaw, 2004 Google Scholar

[27]

Hert S., Seel M., dD Convex Hulls and Delaunay Triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board, 4.13 edition, 2018. <http://www.cgal.org/Manual/>

[28]

Fogel E., Halperin D., Wein R., CGAL arrangements and their applications: A step-by-step guide. Springer Science & Business Media, 2012, http://dx.doi.org/10.1007/978-3-642-17283-0

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.