Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
See all formats and pricing
More options …
Volume 62, Issue 3


Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic)

Marianna Kováčová
  • Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nela Doláková
  • Institute of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Kováč
  • Department of Geology and Paleontology, Faculty of Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-05-26 | DOI: https://doi.org/10.2478/v10096-011-0020-0

Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic)

The case study area covers the slopes of the tectonically quiet European platform and foreland of the tectonically active Carpathian mountain chain (Carpathian Foredeep and Vienna Basin). Therefore the research on pollen spectra mirrors not only the evolution of landscape in two areas with different geodynamics, but also climatic changes in the Central Paratethys domain during the studied time interval. According to the pollen data, the Early to Middle Miocene vegetation reflects subtropical climate with very mild (negligible) cooling events during this period. This is indicated by common occurrence of thermophilous taxa in the whole sedimentary record. The Middle Miocene landscape evolution, conditioned by uplift of the Carpathian mountain chain and subsidence of adjacent lowlands, led to commencement of the altitudinal zonation. The terrestrial and aquatic ecosystems confirm a subtropical climate (Miocene Climatic Optimum, Mi3 event) with some possible long term changes in humidity. The Late Miocene paleogeographical changes, but also general climatic oscillations in the northwestern Central Paratethys realm, resulted in decrease of the number of thermophilous taxa during this time (change in latitudinal position of the vegetation cover). Variously high mountain relief of the uplifted mountain chains (altitudinal zonality) created ideal conditions for mixed mesophytic forests (to open woodland — open grassland type), still with presence of evergreen taxa. A subtropical climate with gradual transition to warm temperate climatic conditions is supposed on the basis of the reconstructed vegetation cover.

Keywords: Miocene; Paratethys; Carpathian Foredeep; Vienna Basin; paleoclimate; palynology

  • Doláková N. 2004: Discussion on some Thermophile palynomorphs from the Miocene sediments in the Carpathian Foredeep (Czech Republic) and Modrý Kameň Basin (Slovakia). Acta Paleobot. 44, 1, 79-85.Google Scholar

  • Doláková N. & Kováčová M. 2008: Pannonian vegetation from the northern part of Vienna Basin. Acta Mus. Nat. Pragae, Ser. B, 64 (2-4), 163-171.Google Scholar

  • Doláková N. & Slamková M. 2003: Palynological characteristics of Karpatian sediments. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 325-346.Google Scholar

  • Doláková N., Hladilová Š. & Nehyba S. 1999: Development of sedimentation, molluscs and palynospectra in the Lower Miocene of the south-western Part of the Carpathian Foredeep in Moravia (Czech Republic). Acta Palaeobot., Suppl. No. 2, 269-278.Google Scholar

  • Fodor L. 1995: From transpression to transtension: Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction. Tectonophysics 242, 151-182.Google Scholar

  • Grünert P., Soliman A., Harzhauser M., Müllegger S., Piller W.E. & Rögl F. 2010: Upwelling conditions in the Early Miocene Central Paratethys Sea. Geol. Carpathica 61, 2, 129-145.Google Scholar

  • Haq B.U. 1991: Sequence stratigraphy, sea-level change and significance for the deep sea. Spec. Publ. Int. Ass. Sed. 12, 3-39.Google Scholar

  • Haq B.U., Hardenbol J. & Vail P.R. 1988: Mesozoic and Cenozoic chronostratigraphy and cycles of sea level changes. In: Wilgus C.K., Hastings B.J., Posamentier H., van Wagoner J.C., Ross C.A. & Kendall C.G. St. C. (Eds.): Sea level changes: an integrated approach. SEPM Spec. Pub. 42, 71-108.Google Scholar

  • Harzhauser M. & Piller E.W. 2007: Benchmark data of changing sea — Palaeogeography, palaeobiogeography and events in the Cenral Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8-31.Google Scholar

  • Harzhauser M., Daxner-Höck G. & Piller E.W. 2004: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Austrian J. Earth Sci. 95/96, 6-19.Google Scholar

  • Hladilová Š. 1988: Palaeoecology of Eggenburgian Molluscs (Bivalvia, Gastropoda) from the HV-301 Čejkovice borehole (Moravia). Čas. Miner. Geol. 3, 1-33 (in Czech).Google Scholar

  • Hofmann Ch. Ch. & Zetter R. 2005: Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, Eastern Austria). Palaios 20, 266-279.CrossrefGoogle Scholar

  • Hofmann Ch. Ch., Zetter R. & Draxler I. 2002: Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens (Niederösterreich). Beitr. Paläont. 27, 17-43.Google Scholar

  • Hochuli P.A. 1978: Palynologische Untersuchungen im Oligozän und Untermiozän der Zentralen und Westlichen Paratethys. Beitr. Paläont Österr. 4, 1-132.Google Scholar

  • Horváth F., Dovenyi P., Szalay S. & Royden L.H. 1988: Subsidence, thermal and maturation history of the Great Hungarian Plain. In: Royden L.H. & Horváth F. (Eds.): The Pannonian Basin. AAPG Memoir 45, 355-372.Google Scholar

  • Hudáčková N., Halásová E., Fordinál K., Sabol M., Joniak P. & Kráľ J. 2003: Biostratigraphy and radiometric dating in the Vienna Basin Neogene (Slovak part). Slovak Geol. Mag. 9, 4, 233-235.Google Scholar

  • Ivanov D.A. 1995: Palynological data about the presence of the family Symplococaceae in the Miocene of Northwestern Bulgaria. Geol. Carpathica 46, 1, 37-40.Google Scholar

  • Ivanov D., Ashraf A.R., Mosbrugger V. & Palamarev E. 2002: Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeogr. Palaeoclimatol. Palaeoecol. 178, 19-37.Google Scholar

  • Knobloch E. 1967: Pflanzenfunde aus der karpatischen Serie in der Vortiefe in Mähren. In: Cicha I., Seneš J. & Tejkal J. (Eds.): Chronostratigraphie und Neostratotypen, Miozän M3 — Karpatien. SAV, Bratislava, 244-256.Google Scholar

  • Knobloch E. 1968: The plant association in Czechoslovakian Tertiary. Čas. Miner. Geol. 13, 1, 109-118 (in Czech, German summary).Google Scholar

  • Knobloch E. 1982: The Early Miocene flora from South Moravia. Zemní Plyn Nafta XXVII, 415-428 (in Czech).Google Scholar

  • Knobloch E. 1984: Die Halophile Gattung Limnocarpus C. Reid im Neogen von Mähren. Věst. Ústř. Úst. Geol. 59, 2, 155-165.Google Scholar

  • Knobloch E. 1985: Die floren des Pannonien im Wiener Becken und in der Donauebene. In: Papp et al. (Eds.): Chronostratigraphie und Neostratotypen. Miozän M6 Pannonien. Jugosl. Serb. Akad. Wiss. Künste, Zagreb/Beograd, 616-631.Google Scholar

  • Konzalová M. 1976: Microbotanical (palynological) research of the Lower Miocene of Northern Bohemia. Rozpr. Čes. Akad. Věd 86, 12, 1-75.Google Scholar

  • Konečný V., Kováč M., Lexa J. & Šefara J. 2002: Neogene evolution of the Carpatho-Pannonian region: An inter-play of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Mueller Spec. Publ. Ser. 1, 105-123.Google Scholar

  • Kováč M. 2000: Geodynamic, paleogeographic and structural evolution of the Carpathian-Pannonian region in the Miocene: New view on the Neogene basins of Slovakia. VEDA, Bratislava, 1-202 (in Slovak).Google Scholar

  • Kováč M., Nagymarosy A., Soták J. & Šutovská K. 1993: Late Tertiary paleogeographic evolution of the West Carpathians. Tectonophysics 226, 1-4, 401-416.Google Scholar

  • Kováč M., Bielik M., Lexa J., Pereszlényi M., Šefara J., Túniy I. & Vass D. 1997: The Western Carpathian intramountain basins. In: Grecula et al. (Eds.): Geological evolution of the Western Carpathians. Miner. Slovaca, 43-65.Google Scholar

  • Kováč M., Nagymarosy A., Oszczypko N., Ślączka A., Csontos L., Marunteanu M., Matenco L. & Márton E. 1998a: Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In: Rakús M. (Ed.): Geodynamic development of the Western Carpathians. Geol. Surv. Slovak Republic, Bratislava, 189-217.Google Scholar

  • Kováč M., Baráth I., Kováčová-Slamková M., Pipík R., Hlavatý I. & Hudáčková N. 1998b: Late Miocene paleoenvironments and sequence stratigraphy: Northern Vienna Basin. Geol. Carpathica 49, 6, 445-458.Google Scholar

  • Kováč M., Nagymarosy A., Holcová K., Hudáčková N. & Zlinská A. 2001: Paleogeography, paleoecology and eustacy: Miocene 3rd order cycles of relative sea-level changes in the Western Carpathian — North Pannonian basins. Acta Geol. Hung. 44/1, 1-45.Google Scholar

  • Kováč M., Andreyeva-Grigorovich A.S., Brzobohatý R., Fodor L. Harzhauser M., Oszczypko N., Pavelič D., Rögl F., Saftič B., Sliva L. & Stráník L. 2003: Karpatian paleogeography, tectonics and eustatic changes. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): Karpatian — a Lower Miocene Stage of the Central Paratethys. Masaryk University Brno, 49-72.Google Scholar

  • Kováč M., Baráth I., Harzhauser M., Hlavatý I. & Hudáčková N. 2004: Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour. Forsch.-Inst. Senckenberg 246, 187-212.Google Scholar

  • Kováč M., Baráth I., Fordinál K., Grigorovich A.S., Halásová E., Hudáčková N., Joniak P., Sabol M., Slamková M., Sliva L., Töröková I. & Vojtko R. 2006: Late Miocene to Early Pliocene sedimentary environments and climatic changes in the Alpine-Carpathian-Pannonian junction area: a case study from the Danube Basin northern margin (Slovakia). Paleogeogr. Paleoclimatol. Paleoecol. 238, 32-52.Google Scholar

  • Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy A., Oszczypko N., Pavelić D., Rögl F., Saftić B., Sliva Ľ. & Studencka B. 2007: Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol. Carpathica 58, 6, 579-606.Google Scholar

  • Kováč M., Hudáčková N., Hlavatá J., Sopková B., Andrejeva-Grigorovič A., Halásová E., Kováčová M., Kováčová P., Sliva Ľ. & Baráth I. 2008: Miocene deposits in the boreholes from the Záhorska lowland area: sedimentology, biostratigraphy and environmental condition. Geol. Práce, Spr. 114, 7-49 (in Slovak, English abstract).Google Scholar

  • Kováč P. & Hók J. 1993: The Central Slovak Fault System — field evidence of a strike-slip. Geol. Carpathica 44, 3, 155-160.Google Scholar

  • Kovar-Eder J., Jechorek H., Kvaček Z. & Parashiv V. 2008a: The integrated plant record: An essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios 23, 97-11.CrossrefGoogle Scholar

  • Kovar-Eder J., Suc J.-P. & Kvaček Z. 2008b: Definition of relevant botanical terms and vegetation units. http://www.neclime.de

  • Krutzsch W. 1989: Palaeogeography and historical phytogeography (paleochorology) in the Neophyticum. Pl. Syst. Evol. 162, 5-61.Google Scholar

  • Kvaček Z. 2003: The flora and vegetation of the Karpatian. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 347-356.Google Scholar

  • Kvaček Z., Manchester S.R., Zetter R. & Pingen M. 2002: Fruites and seeds of Craigia bronni (Malvaceae-Tilioideae) and associated flower buds from the Late Miocene Inden Formation, Lower Rhine Basin, Germany. Rev. Paleobot. Palynol. 119, 311-324.Google Scholar

  • Kvaček Z., Kováč M., Kovar-Eder J., Doláková N., Jechorek H., Parashiv V., Kováčová M. & Sliva Ľ. 2006: Miocene evolution of landscape and vegetation in the Central Paratethys. Geol. Carpathica 57, 4, 295-310.Google Scholar

  • Lambert O., Schlögl J. & Kováč M. 2008: Middle Miocene toothed whale with Platanista-like teeth from the Vienna Basin (Western Carpathians, Slovakia). Neu. Jb. Geol. Paläont. Abh. 250, 2, 157-166.Google Scholar

  • Lankreijer A., Kováč M., Cloetingh S., Pitoňák P., Hlôška M. & Biermann C. 1995: Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basins: thin skinned versus thick skinned extension. Tectonophysics 252, 433-451.Google Scholar

  • Magyar I., Geary D.H., Sütő-Szentai M., Lantos M. & Müller P. 1999: Integrated biostratigraphical, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geol. Hung. 42, 1, 5-31.Google Scholar

  • Mai H.D. 1981: Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas in Tertiär. Flora 171, 525-582.Google Scholar

  • Mai H.D. 1991: Palaeofloristic changes in Europe and the confirmation of the Arctotertiary — Palaeotropical concept. Rev. Palaeobot. Palynol. 68, 1, 29-36.Google Scholar

  • Meulenkamp J.E., Kováč M. & Cicha I. 1996: On Late Oligocene to Pliocene depocentre migration and the evolution of the Carpathian-Pannonian system. Tectonophysics 266, 301-317.Google Scholar

  • Nagy E. 1985: Sporomorphs of the Neogene in Hungary. Geol. Hung., Ser. Palaeont. 47, 1-470.Google Scholar

  • Nagy E. 1999: Palynological correlation of the Neogene of the Central Paratethys. Geol. Inst. Hung., Budapest, 1-126.Google Scholar

  • Nagy E. 2005: Palynological evidence for Neogene climatic change in Hungary. Occass. Pap. Geol. Inst. Hung., Budapest, Vol. 205, 120.Google Scholar

  • Nagy E. & Planderová E. 1985: Palynologische Auswertung der Floren des Pannonien. In: Papp A., Jámbor Á. & Steininger F.F. (Eds.): Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band VII. M6, Pannonien. Akadémiai Kiadó, Budapest, 586-615.Google Scholar

  • Nehyba S., Hladilová Š. & Doláková N. 1997: Sedimentation and fossil assemblages development during the Early Miocene in Southwest part of Carpathian Foredeep in Moravia. In: Hladilová Š. (Ed.): Dynamics of marine and continental environment relationships. Grant Project report GAČR 205/95/ 1211, Brno, 47-58 (in Czech).Google Scholar

  • Oszast J. & Stuchlik L. 1977: Vegetation in Podhala during the Neogene. Acta Paleobot. XVIII, 1, 45-86 (in Polish).Google Scholar

  • Pacltová B. 1982: Organically preserved microfossils as indicators of the paleoenvironment. In: Novák V.J.A. & Mlíkovský J. (Eds.): Evolution and environment. ČSAV, Praha, 757-773.Google Scholar

  • Pavelić D. 2001: Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Research 13, 359-376.CrossrefGoogle Scholar

  • Planderová E. 1972: Pliocene sporomorphs from the Western Carpathians Mountains and their stratigraphic interpretation. Geol. Práce, Spr. 59, 209-283.Google Scholar

  • Planderová E. 1990: Miocene microflora of Slovak Central Paratethys and its biostratigraphical significance. Geol. Inst. D. Štúra, Bratislava, 1-144.Google Scholar

  • Planderová E., Ziembińska-Tworzydło M., Grabowska I., Kohlman-Adamska A., Konzalová M., Nagy E., Pantić N., Ryłova T., Sadowska A., Słodkowska B., Stuchlik L., Syabraj S. & Zdražílková N. 1993a: On palaeofloristic and palaeoclimatic changes during the Neogene of Eastern and Central Europe on the basis of palynological research. Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Dionýz Štúr Inst. Geol., 119-129.Google Scholar

  • Planderová E., Ziembińska-Tworzydło M., Grabowska I., Kohlman-Adamska A., Sadowska A., Słodkowska B., Stuchlik L. & Ważyńska H. 1993b: Climate in Central Europe during the Neogene based on presence palaeotropical and arctotertiary sporomorphs. Przegl. Geol., 41, 12, Państw. Inst. Geol., Bratislava, 829-834 (in Polish).Google Scholar

  • Ratschbacher L., Merle O., Davy P. & Cobbols P. 1991a: Lateral extrusion in the Eastenn Alps. Part 1. Boundary conditions and experiments scaled for gravity. Tectonics 10, 245-256.CrossrefGoogle Scholar

  • Ratschbacher L., Frisch W., Linze H.G. & Merle O. 1991b: Lateral extrusion in the Eastern Alps. Part 2. Structural analysis. Tectonics 10, 257-271.Google Scholar

  • Roetzel R., Ćorić S., Galović I. & Rögl F. 2006: Early Miocene (Ottnangian) coastal upwelling conditions along the southeastern scarp of the Bohemian Massif (Parisdorf, Lower Austria, Central Paratethys). Beitr. Paläont. 30, 387-413.Google Scholar

  • Royden L.H. 1985: The Vienna basin: a thin skinned pull apart basin. In: Biddle K.T. & Christie-Blick N. (Eds.): Strike-slip deformation, basin formation and sedimentation. Soc. Econ. Paleont. Mineralogists, Spec. Publ., Tulsa 37, 319-339.Google Scholar

  • Royden L.H. 1988: Late Cenozoic tectonics of the Pannonian basin system. In: Royden L. & Horváth F. (Eds.): The Pannonian Basin: A study in basin evolution. AAPG Memoir 45, 27-48.Google Scholar

  • Rögl F. 1998: Paleogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279-310.Google Scholar

  • Rögl F., Brzobohatý R., Cicha I., Ćorić S., Daxner-Höck G., Doláková N., Harzhauser M., Hladilová Š., Kroh A., Kvaček Z., Mandic O., Olshtynska A., Pisera A., Reichenbacher B., Schultz O., Švábenická L., Tempfer P., Vávra N. & Zorn I. 2003: Paleobiological characterization of the Karpatian Stage. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian a lower Miocene stage of the Central Paratethys. Masaryk University Brno, 357-360.Google Scholar

  • Sadowska A. 1989: Miocene palynostratigraphy of the Silesian part of the Paratethys Basin. Cour.-Forsch. Inst. Senckenberg 109, 229-235.Google Scholar

  • Sadowska A. 1993: The stratigraphical table of the Neogene floras from Poland. Proceedings of the International Symposium: Palaeofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Dionýz Štúr Inst. Geol., Bratislava, 133-139.Google Scholar

  • Sitár V., Knobloch E., Roman S. & Ticleanu N. 1978: Die Makroflora des Badenian (Rumänien und Tschechoslowakei). In: Papp A., Cicha I., Seneš J. & Steininger F.F. (Eds.): Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys. M4 Badenien. (Moravien, Wielicien, Kosovien). Veda, Bratislava, 555-563.Google Scholar

  • Stuchlik L. 1980: Chronostratigraphy of Neogene in the South of Poland (North part of Paratethys) based on palaeobotanical research. Przegl. Geol. 8, 443-448 (in Polish).Google Scholar

  • Syabryaj S.V. & Vodoryan N.S. 1975: Vegetation and paleogeographical conditon of Middle Sarmatian in the Carpathian area from the data of diatom, spore and pollen analysis. Ukraine Bot. Zsurnal 33, 1, 71-77.Google Scholar

  • Tomek Č. & Hall J. 1993: Subducted continental margin imaged in the Carpathians of Czechoslovakia. Geology 21, 535-538.CrossrefGoogle Scholar

  • Walanus A. & Nalepka D. 1999: POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Paleobot., Suppl. 2, 659-661.Google Scholar

  • Ważyńska H. (Ed.) 1998: Palynology and paleogeography of the Neogene in the Polish Lowlands. Pr. Panstw. Inst. Geol., 1-160.Google Scholar

  • Vail P.R., Mitchum R.M.J., Todd R.G., Widmier J.M., Thompson S., Sangree J.B., Bubb J.N. & Hatlelid W.G. 1977: Seismic stratigraphy and global changes of sea level. In: Clayton C.E. (Ed.): Seismic stratigraphy — application to hydrocarbon exploration. Amer. Assoc. Petrol. Geol. Mem. 26, 49-212.Google Scholar

About the article

Published Online: 2011-05-26

Published in Print: 2011-06-01

Citation Information: Geologica Carpathica, Volume 62, Issue 3, Pages 251–266, ISSN (Online) 1336-8052, ISSN (Print) 1335-0552, DOI: https://doi.org/10.2478/v10096-011-0020-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Michal Kováč, Samuel Rybár, Eva Halásová, Natália Hudáčková, Katarína Šarinová, Michal Šujan, Victoria Baranyi, Marianna Kováčová, Andrej Ruman, Tomáš Klučiar, and Adriena Zlinská
Basin Research, 2017
Katarína Holcová, Juraj Hrabovský, Slavomír Nehyba, Šárka Hladilová, Nela Doláková, and Atilla Demény
Facies, 2015, Volume 61, Number 1
Andrea K. Kern, Mathias Harzhauser, Ali Soliman, Werner E. Piller, and Oleg Mandic
Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, Volume 370, Page 167
M. Dolores Pesquero, Manuel J. Salesa, Eduardo Espílez, Luis Mampel, Gema Siliceo, and Luis Alcalá
Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, Volume 311, Number 1-2, Page 30

Comments (0)

Please log in or register to comment.
Log in