Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
See all formats and pricing
More options …
Volume 62, Issue 6 (Dec 2011)


Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary)

Gábor Kereszturi
  • Volcanic Risk Solutions, CS-INR, Massey University, PO Box 11 222, Palmerston North, New Zealand
  • Geological Institute of Hungary, Stefánia út 14, H-1143, Budapest, Hungary
  • Department of Geology and Mineral Deposits, University of Miskolc, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Károly Németh
  • Volcanic Risk Solutions, CS-INR, Massey University, PO Box 11 222, Palmerston North, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-11-30 | DOI: https://doi.org/10.2478/v10096-011-0038-3

Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary)

Monogenetic, nested volcanic complexes (e.g. Tihany) are common landforms in the Bakony-Balaton Highland Volcanic Field (BBHVF, Hungary), which was active during the Late Miocene up to the Early Pleistocene. These types of monogenetic volcanoes are usually evolved in a slightly different way than their "simple" counterparts. The Kopasz-hegy Volcanic Complex (KVC) is inferred to be a vent complex, which evolved in a relatively complex way as compared to a classical "sensu stricto" monogenetic volcano. The KVC is located in the central part of the BBHVF and is one of the youngest (2.8-2.5 Ma) volcanic erosion remnants of the field. In this study, we carried out volcanic facies analysis of the eruptive products of the KVC in order to determine the possible role of changing magma fragmentation styles and/or vent migration responsible for the formation of this volcano. The evolution of the KVC started with interaction of water-saturated Late Miocene (Pannonian) mud, sand, sandstone with rising basaltic magma triggering phreatomagmatic explosive maar-diatreme forming eruptions. These explosive eruptions in the northern part of the volcanic complex took place in a N-S aligned paleovalley. As groundwater supply was depleted during volcanic activity the eruption style became dominated by more magmatic explosive-fragmentation leading to the formation of a mostly spatter-dominated scoria cone that is capping the basal maar-diatreme deposits. Subsequent vent migration along a few hundred meters long fissure still within the paleovalley caused the opening of the younger phreatomagmatic southern vent adjacent to the already established northern maar. This paper describes how change in eruption styles together with lateral migration of the volcanism forms an amalgamated vent complex.

Keywords: volcanic hazard; phreatomagmatic; scoria cone; maar; vent migration; magma fragmentation; pyroclastic density current

  • Auer A., Martin U. & Németh K. 2007: The Fekete-hegy (Balaton Highland Hungary) "soft-substrate" and "hard-substrate" maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting. J. Volcanol. Geotherm. Res. 159, 225-245.Google Scholar

  • Agustín-Flores J., Siebe C. & Guilbaud M.-N. 2011: Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City. J. Volcanol. Geotherm. Res. 201, 143-162.Google Scholar

  • Balogh K. & Németh K. 2005: Evidence for the Neogene small-volume intracontinental volcanism in the Western Hungary: K/Ar geochronology of the Tihany Maar Volcanic Complex. Geol. Carpathica 56, 91-99.Google Scholar

  • Balogh K. & Pécskay Z. 2001: K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region. Acta Geol. Hung. 44, 281-299.Google Scholar

  • Balogh K., Árva-Sós E., Pécskay Z. & Ravasz-Baranyai L. 1986: K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral. Petrogr. 27, 75-93.Google Scholar

  • Balogh K., Németh K., Itaya T., Molnár F., Stewart R., Thanh N. X., Hyodo H. & Daróczi D. 2010: Loss of 40 Ar(rad) from leucite-bearing basanite at low temperature: implications on K/Ar dating. Cent. Eur. J. Geosci. 2, 385-398.Google Scholar

  • Bence G., Bihari D. & Lantos M. 1987: Geomagnetic measurements to detect basalt volcanic vents in the Balaton Highland. Magy. Áll. Földt. Intéz. Évi Jelent. 1988-ról (1 rész), 363-370 (in Hungarian).Google Scholar

  • Bence G., Budai T. & Csillag G. 1999: Foreland basins. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest 197, 207-211.Google Scholar

  • Brenna M., Cronin S. J., Smith I. E. M., Sohn Y. K. & Németh K. 2010: Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contr. Mineral. Petrology. 160, 6, 931-950.Google Scholar

  • Budai T. & Csillag G. 1998: Geology of the central part of the Balaton Highland (Transdanubian Range, Hungary). A Bakony Természettudományi Kutatásának Eredményei 22, 1-118 (in Hungarian).Google Scholar

  • Budai T., Csillag G., Dudko A. & Koloszár L. 1999: Geological map of Balaton Highland (1:50,000). In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197.Google Scholar

  • Clarke H., Troll V. R. & Carracedo J. C. 2009: Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J. Volcanol. Geotherm. Res. 180, 225-245.Google Scholar

  • Corazzato C. & Tibaldi A. 2006: Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J. Volcanol. Geotherm. Res. 158, 177-194.Google Scholar

  • Crowe B. M. & Fisher R. V. 1973: Sedimentary structures in base surge deposits with special reference to cross bedding; Ubehebe Crater, Death Valley, California. Geol. Soc. Amer. Bull. 84, 663-682.Google Scholar

  • Csillag G. 1999: Platform carbonates. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197, 196-199.Google Scholar

  • Csillag G. 2003: Geological nature protection evaluation: example from the Káli Basin, Hungary. PhD. Thesis, 1-139 (in Hungarian).Google Scholar

  • Csillag G. 2004: Geomorphologic levels of the Kál Basin and its vicinity. Magy. Áll. Földt. Intéz. Évi Jelent., 2004-ről, 95-110 (in Hungarian with English abstract).Google Scholar

  • Csillag G., Gondárné Sőregi K. & Koloszár L. 1994: Geological nature protection: methodological studies from the Káli Basin, Hungary. [A földtani felépítés meghatározó szerepe a Káli-medence felszínalatti vízrendszerében.] A Kárpát-medence vízkészlete és vízi környezetvédelme kongresszus (Eger), 136-156 (in Hungarian).Google Scholar

  • Csillag G., Gondárné Sőregi K., Kiss J., Koloszár L., Szeiler R., Tullner T. & Vértesy L. 1998: Földtani természetvédelem: módszertani vizsgálatok a Káli-medencében. Földt. Kutatás 35, 9-18 (in Hungarian).Google Scholar

  • Fisher R. V. & Schmincke H.-U. 1984: Pyroclastic rocks. Springer-Verlag, Berlin, 1-472.Google Scholar

  • Fodor L., Csillag G., Németh K., Budai T., Cserny T., Martin U., Brezsnyánszky K. & Dewey J. 2002: Tectonic development, morphotectonics and volcanism of the Transdanubian Range: a field guide. In: Fodor L. & Brezsnyánszky K. (Eds.): Proceedings of the workshop on "Application of GPS in plate tectonics, in research on fossil energy resources and in earthquake hazard assessment". Occas. Pap. Geol. Inst. Hung., Budapest, 204, 59-86.Google Scholar

  • Gondár K. & Gondárné Sőregi K. 1999: Hydrogeology — The Balaton Highland. In: Budai T. & Csillag G. (Eds.): Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1:50,000. Geol. Inst. Hung., Budapest, 197, 235-239.Google Scholar

  • Head J. W. & Wilson L. 1987: Lava fountain heights at Pu'u ‘O'o, Kilauea, Hawaii: Indicators of amount and variations of exsolved magma volatiles. J. Geophys. Res. 92, 13715-13719.Google Scholar

  • Ingram R. L. 1954: Terminology for thickness of stratification and parting units in sedimentary rocks. Geol. Soc. Amer. Bull. 65, 937-938.Google Scholar

  • Kereszturi G., Csillag G., Németh K., Sebe K., Balogh K. & Jáger V. 2010: Volcanic architecture, eruption mechanism and landform evolution of a Pliocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent. Eur. J. Geosci. 2, 362-384.Google Scholar

  • Kereszturi G., Németh K., Csillag G., Balogh K. & Kovács J. 2011: The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J. Volcanol. Geotherm. Res. 201, 227-240.Google Scholar

  • Lorenz V. 1973: On the formation of maars. Bull. Volcanol. 37, 183-204.Google Scholar

  • Lorenz V. 1984: Explosive volcanism of the West Eifel volcanic field, Germany. In: Kornprobat J. (Ed.): Kimberlites. I. Kimberlites and related rocks. Elsevier, Amsterdam, 299-307.Google Scholar

  • Lorenz V. 1986: On the growth of maar and diatremes and its relevance to the formation of tuff rings. Bull. Volcanol. 48, 265-274.Google Scholar

  • Lorenz V. 2007: Syn- and posteruptive hazards of maar-diatreme volcanoes. J. Volcanol. Geotherm. Res. 159, 285-312.Google Scholar

  • Lorenz V. & Kurszlaukis S. 2007: Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J. Volcanol. Geotherm. Res. 159, 4-32.Google Scholar

  • Lorenz V. & Zimanowski B. 2000: Volcanology of the West Eifel maars. In: Neuffer F. O. & Lutz H. (Eds.): Field trip guidebook. International Maar Conference, (17-27 August 2000, Daun, Germany). Mainz, 5-51.Google Scholar

  • Magyar I., Geary D. H. & Müller P. 1999: Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 147, 151-167.Google Scholar

  • Martin U. & Németh K. 2004: Mio/Pliocene Phreatomagmatic Volcanism in the Western Pannonian Basin. Budapest, 1-192.Google Scholar

  • Mattsson H. B. & Höskuldsson Á. 2011: Contemporaneous phreatomagmatic and effusive activity along the Hverfjall eruptive fissure, north Iceland: Eruption chronology and resulting deposits J. Volcanol. Geotherm. Res. 201, 241-252.Google Scholar

  • Müller G. & Veyl G. 1957: The birth of Nilahue, a new maar type volcano at Rininahue, Chile. 20th International Geological Congress Sect. I, Vol. 2, Cenozoic Volcanism, 375-396.Google Scholar

  • Needham A. J., Lindsay J. M., Smith I. E. M., Augustinus P. & Shane P. A. 2011: Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in The Auckland Volcanic Field, New Zealand. J. Volcanol. Geotherm. Res. 201, 126-142.Google Scholar

  • Németh K. & Cronin S. J. 2011: Drivers of explosivity and elevated hazard in basaltic fissure eruptions: The 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J. Volcanol. Geotherm. Res. 201, 194-209.Google Scholar

  • Németh K. & Martin U. 1999: Small-volume volcaniclastic flow deposits related to phreatomagmatic explosive eruptive centres near Szentbékkálla, Bakony-Balaton Highland Volcanic Field, Hungary: Pyroclastic flow or hydroclastic flow? Földt. Közl. 129, 393-417.Google Scholar

  • Németh K., Martin U. & Harangi S. 2001: Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J. Volcanol. Geotherm. Res. 111, 111-135.Google Scholar

  • Németh K., Martin U. & Csillag G. 2003: Eroded phreatomagmatic crater and vent filling pyroclastic deposits (diatremes) from the Bakony - Balaton Highland Volcanic Field, Hungary). Magy. Áll. Földt. Intéz. Évi Jelent., 2000-ről, 83-99 (in Hungarian).Google Scholar

  • Németh K., Cronin S. J., Haller M. J., Brenna M. & Csillag G. 2010: Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields. Cent. Eur. J. Geosci. 2, 339-361.Google Scholar

  • Németh K., Risso C., Nullo F. & Kereszturi G. 2011: The role of collapsing and rafting of scoria cones on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina. Cent. Eur. J. Geosci. DOI: 10.2478/s13533-011-0008-4CrossrefGoogle Scholar

  • Ort M. H. & Carrasco-Núñez G. 2009: Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J. Volcanol. Geotherm. Res. 181, 67-77.Google Scholar

  • Pécskay Z., Lexa J., Szakács A., Seghedi I., Balogh K., Konečný V., Zelenka T., Kovacs M., Póka T., Fülöp A., Márton E., Panaiotu C. & Cvetkovic V. 2006: Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol. Carpathica 57, 511-530.Google Scholar

  • Ross P.-S., Delpit S., Haller M. J., Németh K. & Corbella H. 2011: Influence of the substrate on maar-diatreme volcanoes — an example of a mixed setting from the Pali Aike volcanic field, Argentina. J. Volcanol. Geotherm. Res. 201, 253-271.Google Scholar

  • Sohn Y. K. & Chough S. K. 1989: Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36, 837-855.Google Scholar

  • Szabó C., Falus G., Zajacz Z., Kovács I. & Bali E. 2004: Composition and evolution of lithosphere beneath the Carpathian-Pannonian region: a review. Tectonophysics 393, 119-137.Google Scholar

  • Vazquez J. A. & Ort M. H. 2006: Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J. Volcanol. Geotherm. Res. 154, 222-236.Google Scholar

  • Vespermann D. & Schmincke H.-U. 2000: Scoria cones and tuff rings. In: Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H. & Stix J. (Eds.): Encyclopedia of volcanoes. Academic Press, San Diego, 683-694.Google Scholar

  • White J. D. L. & Houghton B. F. 2006: Primary volcaniclastic rocks. Geology 34, 677-680.Google Scholar

  • White J. D. L. & Ross P.-S. 2011: Maar-diatreme volcanoes: A review. J. Volcanol. Geotherm. Res. 201, 1-29.Google Scholar

  • Wijbrans J., Németh K., Martin U. & Balogh K. 2007: 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J. Volcanol. Geotherm. Res. 164, 193-204.Google Scholar

  • Wohletz K. H. & Sheridan M. F. 1983: Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Amer. J. Sci. 283, 385-413.Google Scholar

About the article

Published Online: 2011-11-30

Published in Print: 2011-12-01

Citation Information: Geologica Carpathica, ISSN (Online) 1336-8052, ISSN (Print) 1335-0552, DOI: https://doi.org/10.2478/v10096-011-0038-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

T.N. Blaikie, L. Ailleres, P.G. Betts, and R.A.F. Cas
Journal of Volcanology and Geothermal Research, 2014, Volume 276, Page 64
Gábor Kereszturi, Gyozo Jordan, Károly Németh, and Javier F. Dóniz-Páez
Bulletin of Volcanology, 2012, Volume 74, Number 9, Page 2171
K. Németh, C. Risso, F. Nullo, I.E.M. Smith, and Z. Pécskay
Journal of Volcanology and Geothermal Research, 2012, Volume 239-240, Page 33

Comments (0)

Please log in or register to comment.
Log in