Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year


IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
Online
ISSN
1336-8052
See all formats and pricing
More options …
Volume 64, Issue 1

Issues

Paleoenvironments during the Rhaetian transgression and the colonization history of marine biota in the Fatric Unit (Western Carpathians)

Jozef Michalík
  • Corresponding author
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O.Box 106, 840 05 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Otília Lintnerová
  • Corresponding author
  • Department of Geology and Mineral Deposits, Faculty of Natural Sciences, Comenius University, Mlynská dolina G1, 842 15 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrycja Wójcik-Tabol
  • Corresponding author
  • Department of Geological Sciences, Jagiellonian University, Oleandry Str. 2a (room 109), 30-063 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Gaździcki / Jacek Grabowski
  • Corresponding author
  • Polish Geological Institute, National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marián Golej
  • Corresponding author
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O.Box 106, 840 05 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Šimo
  • Corresponding author
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O.Box 106, 840 05 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Zahradníková
  • Corresponding author
  • Slovak National Museum, Natural Science Museum, Vajanského nábrežie 2, P.O.Box 13, 810 06 Bratislava, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/geoca-2013-0003

Abstract

Terminal Triassic environmental changes are characterized by an integrated study of lithology, litho- and cyclostratigraphy, paleontology, mineralogy, geochemistry and rock magnetism in the Tatra Mts. The Carpathian Keuper sequence was deposited in an arid environment with only seasonal rivers, temporal lakes and swamps with scarce vegetation. Combination of a wide range of δ18O values (-0.7 to + 2.7) with negative δ13C values documents dolomite precipitation either from brackish or hypersaline lake water, or its derivation from pore water comparably to the Recent Coorong B-dolostone. Negative δ13C values indicate microbial C productivity. Rhaetian transgressive deposits with restricted Rhaetavicula fauna accumulated in nearshore swamps and lagoons. Associations of foraminifers, bivalves and sharks in the Zliechov Basin were controlled by physical factors. Bivalve mollusc biostromes were repetitively destroyed by storms, and temporary firm bottoms were colonized by oysters and burrowers. Subsequent black shale deposition recorded input of eolian dust. Bottom colonization by pachyodont bivalves, brachiopod and corals started much later, during highstand conditions. Facies evolution also revealed by geochemical data, C and O isotope curves reflect eustatic and climatic changes and help reconstruct the evolution of Rhaetian marine carbonate ramp. The Fatra Formation consists of 100 kyr eccentricity and 40 kyr obliquity cycles; much finer rhythmicity may record monsoonlike climatic fluctuations. Fluvial and eolian events were indicated by analysis of grain size and content of clastic quartz, concentrations of foraminiferal (Agathammina) tests in thin laminae indicates marine ingression events. Magnetic susceptibility (MS) variations reflect the distribution of authigenic and detrital constituents in the sequence. Increasing trend of MS correlates with the regressive Carpathian Keuper sequence and culminates within the bottom part of the Fatra Formation. Decreasing trend of MS is observed upwards the transgressive deposits of the Fatra Formation.

Keywords : uppermost Triassic; Western Tethys; Slovakia; sedimentology; sequence stratigraphy; geochemistry; marine fauna

  • Ahlberg A., Arndorf L. & Ohlson D. 2002: Onshore climatic change during the Late Triassic marine inundation of the Central European Basin. Terra Nova 14, 241-248.CrossrefGoogle Scholar

  • Al-Juboury A.I. & Ďurovič V. 1992: Paleoenvironment interpretation of the Carpathian Keuper rocks as revealed by clay mineral analysis. Geol. Carpathica, Clays 2, 73-76.Google Scholar

  • Al-Juboury A.I. & Ďurovič V. 1996: Supratidal origin of Carpathian Keuper dolostones. Miner. Slovaca 28, 12-20.Google Scholar

  • Allasinaz A. 1972: Revisione dei Pettinidi triassici. Riv. Ital. Paleont. Stratigr. 78, 2, 189-428.Google Scholar

  • Bacelle L. & Bosellini A. 1965: Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Ann. Univ. Ferrara, N. S., sez. IX., Sci. Geol. Paleont. 1, 3, 59-62.Google Scholar

  • Bau M. & Dulski P. 1996: Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37-55.CrossrefGoogle Scholar

  • Bechtel A., Gawlick H.-J., Gratzer R., Tomaselli M. & Pűttmann W. 2007: Molecular indicators of palaeosalinity and depositional environment of small-scale basins within carbonate platforms. The Late Triassic Hauptdolomit Wiestalausee section near Hallein (N Calcareous Alps, Austria). Organic Geochem. 38, 92-111.Google Scholar

  • Berra F., Jadoul F. & Anelli A. 2010: Environmental control on the end of the Dolomia Principale (Hauptdolomit) depositional system in the Central Alps: coupling sea-level and climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 138-150.Google Scholar

  • Borza K. 1959: Geological and petrographical relationships of the Mesozoic sequences of the Belianske Tatry Mts and the Široká mountains group. Geol. Sborn. SAV 10, 133-182 (in Slovak).Google Scholar

  • Bromley R.G. 1996: Trace fossils, biology, taphonomy and applications.Google Scholar

  • Second edition. Chapman and Hall, 1-361.Google Scholar

  • Cao J., Wu M., Chen Y., Hu K., Bian L., Wang L. & Zhang Y. 2012: Trace and rare element geochemistry of Jurassic mudstone in the northern Qaidam Basin, northwest China. Chemieder Erde., doi: 101016/j.chemer.2011.12.002 Cappetta H. 1987: Chondrichthyes II. Mesozoic and Cenozoic Elasmobranchii. Handbook of Paleoichthyology 3B, 1-193.Google Scholar

  • Condie K., Calvert S.E. & Pedersen T.F. 1993: Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1-37.CrossrefGoogle Scholar

  • Cox L.R. 1961: New genera and subgenera of Mesozoic Bivalvia.Paleontology 4, 4, 592-598.Google Scholar

  • Crick R.E., Ellwood B.B., Hassani A.E., Hladil J., Hrouda F. & Chlupáč I. 2001: Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Pridoli - Lochkovian GSSP (Klonk, Czech Republic) and coeval sequences in the Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167, 73-100.Google Scholar

  • Cullers R.L. 2000: The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181-203.CrossrefGoogle Scholar

  • Da Silva A.-C., Mabille C. & Boulvain F. 2009: Influence of sedimentary setting on the use of magnetic susceptibility: examples from the Devonian of Belgium. Sedimentology 56, 1292-1306.CrossrefGoogle Scholar

  • Devleeschouwer X., Petitclerc E., Spassov S. & Préat A. 2010: The Givetian-Frasnian boundary at Nismes parastratotype (Belgium): the magnetic susceptibility signal controlled by ferromagnetic minerals. Geol. Belgica 13, 351-366.Google Scholar

  • Duffin C.J. & Gaździcki A. 1977: Rhaetian fish remains from the Tatra Mountains. Acta Geol. Pol. 27, 3, 333-348.Google Scholar

  • Ellwood B.B., Crick R.E., Hassani A.E., Benoist S.L. & Young R.H. 2000: Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input vs. carbonate productivity. Geology 28, 1135-1138.CrossrefGoogle Scholar

  • Forster Th., Evans M.E. & Heller F. 1994: The frequency dependence of low field susceptibility in loess sediments. Geophys. J. Int. 118, 636-642.Google Scholar

  • Garcia del Cura M.A., Calvo J.P., Ordón~ ez Jones B.F. & Can~averas J.C. 2001: Petrographic and geochemical evidence for the formation of primary bacterially induced lacustrine dolomites: La Roda “white earth” (Pliocene, central Spain). Sedimentology 48, 897-915.CrossrefGoogle Scholar

  • Gaździcki A. 1974: Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geol. Pol. 24, 1, 17-96.Google Scholar

  • Gaździcki A. 1983: Foraminifers and biostratigraphy of Upper Triassic and Lower Jurassic of the Slovakian and Polish Carpathians. Paleont. Pol. 44, 109-169.Google Scholar

  • Gaździcki A. & Iwanow A. 1976: The diachronism of the Rhaetic and “Gresten” Beds in the Tatra Mts (West Carpathians). Bull. Acad. Pol. Sci., Sér. Sci. de la Terre 24, 2, 117-122.Google Scholar

  • Gaździcki A., Michalík J., Planderová E. & Sýkora M. 1979: An Upper Triassic-Lower Jurassic sequence in the Krížna Nappe (West Tatra Mts, Western Carpathians, Czechoslovakia). Západ. Karpaty, Geol. 5, 119-148.Google Scholar

  • German C.R., Holiday B.P. & Elderfield H. 1991: Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta 55, 3553-3558.Google Scholar

  • Golebiowski R. 1991: Becken und Riffe der Alpinen Obertrias- Lithostratigraphie und Biofazies der Kössener Formation. Exkursionen Jungpaläozoikum und Mesozoikum Österreichs, Österr. Paläont. Gesell., 79-119.Google Scholar

  • Grabowski J., Michalík J., Szaniawski R. & Grotek I. 2009: Synthrusting remagnetization of the Krížna nappe: high resolution palaeo- and rock magnetic study in the Strážovce section, Strážovské vrchy Mts, Central West Carpathians (Slovakia). Acta Geol. Pol. 59, 2, 137-155.Google Scholar

  • Haas J., Götz A.E. & Pálfy J. 2010: Late Triassic to Early Jurassic paleogeography and eustatic history of the NW Tethyan Realm: new insights from sedimentary and organic facies of the Csövár Basin (Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 456-468.Google Scholar

  • Haley A.B., Klinkhammer P.G. & Mc Manus S.J. 2004: Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 68, 1265-1279.Google Scholar

  • Hallam A. 1981: The end-Triassic bivalve extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 1-44.Google Scholar

  • Hannigan E.R. & Sholkowitz R.E. 2001: The development of middle rare earth in freshwater: weathering of phosphate minerals. Chem. Geol. 175, 495-508.Google Scholar

  • Hautmann M. 2001: Die Muschelfauna der Nayband-Formation (Obertrias, Nor-Rhät) des östlichen Zentraliran. Beringeria H. 29, 3-181.Google Scholar

  • Hölder H. 1990: Über die Muschelgattung Placunopsis (Pectinacea, Placunopsidae) in Trias und Jura. Stuttgarter Beitr. Naturkunde,Serie B, Geol. Paläont. 165, 1-63.Google Scholar

  • Ivimey-Cook H.C., Hodges P., Swift A. & Radley J.D. 1999: Bivalves.Google Scholar

  • In: Swift A. & Martill D.M. (Eds.): Fossils of the Rhaetian Penarth Group. Palaeont. Assoc., London, 83-127.Google Scholar

  • Jackson M., Rochette P., Fillion G., Banerjee S. & Marvin J. 1993: Rock magnetism of remagnetized Paleozoic carbonates: Lowe Temperature behaviour and susceptibility characteristics. J. Geophys. Res. 98, B4, 6217-6225.CrossrefGoogle Scholar

  • Jaglarz P. 2010: Facies and sedimentary environment of the carbonate- dominated Carpathian Keuper from the Tatricum Domain: Results from the Dolina Smytnia Valley (Tatra Mts, Southern Poland). Ann. Soc. Geol. Pol. 80, 147-161.Google Scholar

  • Kollárová-Andrusovová V. & Kochanová M. 1973: Molluskenfauna des Bleskový prameň bei Drnava (Nor, Westkarpaten). Vydav. SAV, Bratislava, 1-215.Google Scholar

  • Korte C., Kozur H.W. & Veizer J. 2005: δ13C and δ18O values of Google Scholar

  • Triassic brachiopods and carbonate rock as proxies for coeval seawater and paleotemperature. Palaeogeogr. Palaeoclimatol. Palaeoecol. 226, 287-306.Google Scholar

  • Legler B. & Schneider J. 2008: Marine ingression into the Middle/ Late Permian saline lake of the southern Permian Basin (Rotliegend, N Germany), possible linked to sea-level highstands in the Arctic Rift System. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 102-114.Google Scholar

  • Limanowski M. 1903: Continental Permian and Triassic sediments in the Tatra Mts. Pamietnik Towarzystwa Tatrzańskiego 24, 140-176 (in Polish).Google Scholar

  • Masaryk P. & Lintnerová O. 1997: Diagenesis and porosity of the Upper Triassic carbonates of the pre-Neogene Vienna Basin basement. Geol. Carpathica 48, 6, 371-386.Google Scholar

  • Michalík J. 1975: Genus Rhaetina Waagen, 1882 (Brachiopoda) in the uppermost Triassic of the West Carpathians. Geol. Zbor. Geol. Carpath. 26, 1, 47-76.Google Scholar

  • Michalík J. 1977: Paläogeographische Untersuchungen der Fatra- Schichten (Kössen Formation) des N Teiles des Fatrikums in den Westkarpaten. Geol. Zbor. Geol. Carpath. 28, 1, 71-94.Google Scholar

  • Michalík J. 1978: To the paleogeographic, paleotectonic and paleoclimatic development of the West Carpathian area in the uppermost Triassic. In: Vozár J. (Ed.): Paleogeographic development of the Western Carpathians. D. Štúr’s Geol. Inst., Bratislava, 189-211.Google Scholar

  • Michalík J. 1979: Paleobiogeography of the Fatra Formation of the uppermost Triassic of the Western Carpathians. Paleont. Konf. Univerzita Karlova, Praha 1978, 25-39.Google Scholar

  • Michalík J. 1980: A paleoenvironmental and paleoecological analysis of the northern Tethyan nearshore region in the latest Triassic time. Riv. Ital. Paleont. Stratigr. 85, 3-4, 1047-1064.Google Scholar

  • Michalík J. 1982: Uppermost Triassic short-lived bioherm complexes in the Fatric, Western Carpathians. Facies 6, 129-146.CrossrefGoogle Scholar

  • Michalík J. & Jendrejáková O. 1978: Organism communities and biofacies of the Fatra Formation (uppermost Triassic, Fatric) in the West Carpathians. Geol. Zbor. Geol. Carpath. 29, 1, 113-137.Google Scholar

  • Michalík J., Jendrejáková O. & Borza K. 1979: Some new Foraminifera species of the Fatra Formation (uppermost Triassic) in the West Carpathians. Geol. Zbor. Geol. Carpath. 30, 1, 61-91.Google Scholar

  • Michalík J., Lintnerová O., Gaździcki A. & Soták J. 2007: Record of environmental changes in the Triassic-Jurassic boundary interval in the Zliechov Basin, Western Carpathians. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 71-88.Google Scholar

  • Michalík J., Biroň A., Lintnerová O., Götz A.E. & Ruckwied K. 2010: Climatic change at the T/J boundary in the NW Tethyan Realm (Tatra Mts., Slovakia). Acta Geol. Pol. 60, 535-548.Google Scholar

  • Mikuláš R. 2006: Ichnofabric and substrate consistency in Upper Turonian carbonates of the Bohemian Cretaceous Basin (Czech Republic). Geol. Carpathica 57, 2, 79-90.Google Scholar

  • Ounis A., Kocsis L., Chaabani F. & Pheifer H.-R. 2008: Rare earth elements and stable isotope geochemistry (δ13C and δ18O) of phosphorite deposits in the Gafsa Basin, Tunisia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 1-18. Google Scholar

  • Pálfy J., Demény A., Haas J., Hetényi M., Orchard M.J. & Vetö I. 2001: Carbon isotope anomaly and other geochemical changes at the Triassic/Jurassic boundary from a marine section in Hungary. Geology 29, 11, 1047-1050.Google Scholar

  • Pálfy J., Demény A., Haas J., Carter E.S., Görög Á., Halász D., Oravecz-Scheffer A., Hetényi M., Márton E., Orchard M.J., Ozsvárt P., Vető I. & Zajzon N. 2007: Triassic-Jurassic boundary events inferred from integrated stratigraphy of the Csővár section, Hungary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 1, 11-33.Google Scholar

  • Preto N., Kustatscher E. & Wignall P.B. 2010: Triassic climate - state of the art and the perspectives. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 1-10.Google Scholar

  • Reijmer J.J.G. 1998: Compositional variations during phases of progradation and retrogradation of a Triassic carbonate platform (Picco di Vallandro/Dürrenstein, Dolomites, Italy). Geol. Rdsch. 87, 436-448.Google Scholar

  • Roniewicz E. & Michalík J. 1998: Rhaetian scleractinian corals in the Western Carpathians. Geol. Carpathica 53, 3, 149-157.Google Scholar

  • Rosen M.R., Miser D.E., Starcher M.A. & Warren J.K. 1989: Formation of dolomite in the Coorong region, South Australia. Geochim. Cosmochim. Acta 53, 661-669.Google Scholar

  • Ruckwied K. & Götz A.E. 2009: Climate change at the Triassic/Jurassic boundary: palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geol. Carpathica 60, 2, 139-149.Google Scholar

  • Rychliński T. 2008: Facies development and sedimentary environments of the Carpathian Keuper deposits from the Tatra Mts., Poland and Slovakia. Ann. Soc. Geol. Pol. 78, 1-18.Google Scholar

  • Seilacher A. 1954: Ökologie der triassischen Muschel Lima lineata (Schloth.) und ihrer Epöken. Neu. Jb. Geol. Paläont., Monatshefte, 4, 163-183.Google Scholar

  • Sheldon N.D. & Tabor N.J. 2009: Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci.Rev. 95, 1-52.CrossrefGoogle Scholar

  • Shields G.A. & Webb G.E. 2004: Has the REE composition of seawater changed over geological time? Chem. Geol. 204, 103-107.Google Scholar

  • Smith T.-M. & Dorobek S.L. 1993: Alteration of early-formed dolomite during shallow to deep burial: Mississippian Mission Canyon Formation, central to southwestern Montana. Geol. Soc. Amer. Bull. 105, 1389-1399.Google Scholar

  • Swift A. & Martill D.M. 1999: Fossils of the Rhaetian Penarth Group. Palaeont. Assoc., London, 1-312.Google Scholar

  • Środoń J., Kotarba M., Biroň A., Such P., Clauer N. & Wójtowicz A. 2006: Diagenetic history of the Podhale - Orava Basin and the underlying Tatra sedimentary structural units (Western Carpathians): Evidence from XRD and K-Ar of illite-smectite. Clay Miner. 41, 751-774.CrossrefGoogle Scholar

  • Todd J.A. & Palmer T.J. 2002: The Jurassic bivalve genus Placunopsis: New evidence on anatomy and affinities. Palaeontology 45, 3, 487-510.CrossrefGoogle Scholar

  • Turnau-Morawska M. 1953: Carpathian Keuper, its petrography and sedimentology. Acta Geol. Pol. 3, 33-102 (in Polish).Google Scholar

  • Wacey D., Wright D.T. & Boyce A.J. 2007: A stable isotope study of microbial dolomite formation in the Coorong region, South Australia. Chem. Geol. 244, 155-174.Google Scholar

  • Ward P.D., Garrison G.H., Williford K.H., Kring K.H., Goodwin D., Beattie M. & McRoberts C. 2007: The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Fergusson Hill, Muller Canyon, Nevada, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 281-289.Google Scholar

  • Warren J. 2000: Dolomite: occurrence, evolution and economically important association. Earth Sci. Rew. 52, 1-81.Google Scholar

  • Whalen M.T. & Day J.E. 2010: Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate; Upper Devonian, Western Canada Sedimentary Basin. J. Sed. Res. 80, 1109-1127.CrossrefGoogle Scholar

  • Winkler G.G. 1859: Die Schichten der Avicula contorta inner- und ausserhalb der Alpen: Paläontologisch-geognostische Studie. Johann Palm Hofbuchhandlung, Munchen, 1-51, 2 plates.Google Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-02-01


Citation Information: Geologica Carpathica, Volume 64, Issue 1, Pages 39–62, ISSN (Online) 1336-8052, ISSN (Print) 1335-0552, DOI: https://doi.org/10.2478/geoca-2013-0003.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
LUO Shenglong, WANG Genhou, GAO Jinhan, WANG Xunlian, and XIAO Hongji
Acta Geologica Sinica - English Edition, 2015, Volume 89, Number 5, Page 1673

Comments (0)

Please log in or register to comment.
Log in