Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
See all formats and pricing
More options …
Volume 65, Issue 1 (Feb 2014)


Timing of the Middle Miocene Badenian Stage of the Central Paratethys

Johann Hohenegger / Stjepan Ćorić / Michael Wagreich
Published Online: 2014-03-11 | DOI: https://doi.org/10.2478/geoca-2014-0004


A new and precisely defined chronometric subdivision of the Badenian (Middle Miocene, regional stage of Central Paratethys) is proposed. This uses global events, mainly geomagnetic polarity reversals as correlated chronometric boundaries, supported by climatic and sea-level changes in addition to isotope events and biostratigraphic data. The Karpatian/ Badenian boundary lies at 16.303 Ma, at the top of Chron C5Cn.2n, which is near the base of the Praeorbulina sicana Lowest-occurrence Zone (LOZ). The Badenian/Sarmatian boundary is placed at the top of polarity Chron C5Ar.2n, thus at 12.829 Ma. In relation to three sea level cycles TB 2.3, TB 2.4 and TB 2.5 and astronomically confirmed data, the Badenian can be divided into three parts of nearly equivalent duration. The Early Badenian as newly defined here ranges from 16.303 to 15.032 Ma (top of polarity Chron C5Bn.2n). The younger boundary correlates roughly to the base of the planktonic foraminifera Orbulina suturalis LOZ at 15.10 Ma, the HO (Highest Occurrence) of the nannofossil Helicosphaera ampliaperta at 14.91 Ma (NN4/NN5 boundary) and the Lan2/Ser1 sequence boundary at 14.80 Ma. The subsequent Mid Badenian ranges from 15.032 Ma to 13.82 Ma; the latter datum correlates with the base of the Serravallian, characterized by a strong global cooling event reflected in the oxygen isotope event Mi3b. The main part of cycle TB 2.4 falls into the Mid Badenian, which can be subdivided by a short cooling event at 14.24 Ma during the Middle Miocene Climate Transition (14.70 to 13.82 Ma). The HCO (Highest common occurrence) of the nannofossil Helicosphaera waltrans at 14.357 Ma supports this division, also seen in the tropical plankton Zones M6 Orbulina suturalis LOZ and M7 Fohsella peripheroacuta LOZ that correspond roughly to the lower and upper Lagenidae zones in the Vienna Basin, respectively. The Late Badenian is delimited in time at the base to 13.82 Ma by the Langhian/Serravallian boundary and at the top by the top of polarity Chron C5Ar.2n at 12.829 Ma. The Mediterranean Langhian/Serravallian boundary can be equated with the Mid/Late Badenian boundary at 13.82 Ma. However, the Karpatian/Badenian boundary at 16.303 Ma, a significant event easily recognizable in biostratigraphy, paleoclimate evolution and sequence stratigraphy, cannot be equated with the proposed global Burdigalian/Langhian, and thus Early/Middle Miocene boundary, at 15.974 Ma

Keywords: Middle Miocene; Badenian; Paratethys; magnetostratigraphy; biostratigraphy; paleoclimate; sequence stratigraphy


  • Abdul Aziz H., Di Stefano A., Foresi L.M., Hilgen F.J., Iaccarino S.M., Kuiper K.F., Lirer F., Salvatorini G. & Turco E. 2008: Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg42A, Site 372 (Western Mediterranean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 123-138.Google Scholar

  • Abreu V.S. & Haddad G.A. 1998: Glacioeustatic fluctuations: the mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. In: Graciansky C.-P., Hardenbol J., Jacquin T. & Vail P.R. (Eds.): Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec. Publ. 60, 245-260.Google Scholar

  • Adámek J., Brzobohatý R., Pálensky P. & Šikula J. 2003: The Karpatian in the Carpathian Foredeep (Moravia). In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian, a Lower Miocene Stage of the Central Paratethys. Masaryk University, Brno, 75-92.Google Scholar

  • Andreyeva-Grigorovich A.S., Oszczypko N., Savitskaya N.A., Ślączka A. & Trofimovich N.A. 2003: Correlation of late Badenian salts of the Wieliczka, Bochnia and Kalush areas (Polish and Ukrainian Carpathian Foredeep). Ann. Soc. Geol. Pol. 73, 67-89.Google Scholar

  • Andreyeva-Grigorovich A.S., Oszczypko N., Ślączka A., Oszczypko- Clowes M., Savitskaya N.A. & Trofimovich N.A. 2008: New data on the stratigraphy of the folded Miocene Zone at the front of the Ukrainian Outer Carpathians. Acta Geol. Pol. 58, 325-353.Google Scholar

  • Anthonissen E. & Ogg J.G. 2012: Appendix 3. Cenozoic and Cretaceous biochronology of planktonic foraminifera and calcareous nannofossils. In: Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M (Eds.): The Geologic Time Scale 2012. Elsevier, Amsterdam, 1083-1127.Google Scholar

  • Berggren W.A., Kent D.V., Swisher III, C.C. & Aubry M.-P. 1995: A revised Cenozoic geochronology and chronostratigraphy. In: Berggren W.A., Kent D.V., Aubry M.-P. & Hardenbol J. (Eds.): Geochronology, time scales and global stratigraphic correlation. SEPM Spec. Publ. 54, 129-212.Google Scholar

  • Cicha I. & Seneš J. 1968: Sur la position du Miocene de la Paratethys Central dans le cadre du Tertiaire de l’Europe. Geol. Sborn. 19, 95-116.Google Scholar

  • Cita M.B. & Blow W.H. 1969: The biostratigraphy of the Langhian, Serravallian and Tortonian stages in the type-sections in Italy. Riv. Ital. Paleont. 75, 549-603.Google Scholar

  • Ćorić S. & Hohenegger J. 2008: Quantitative analyses of calcareous nannoplankton assemblages from the Baden-Sooss section (Middle Miocene of Vienna Basin, Austria). Geol. Carpathica 59, 447-460.Google Scholar

  • Ćorić S. & Rögl F. 2004: Roggendorf-1 borehole, a key-section for Lower Badenian transgressions and the stratigraphic position of the Grund Formation (Molasse Basin, Lower Austria). Geol. Carpathica 55, 165-178.Google Scholar

  • Ćorić S., Harzhauser M., Hohenegger J., Mandic O., Pervesler P., Roetzel R., Rögl F., Scholger R., Spezzaferri S., Stingl K., Švábenická L., Zorn I. & Zuschin M. 2004: Stratigraphy and correlation of the Grund Formation in the Molasse Basin, northeastern Austria (Middle Miocene, Lower Badenian). Geol. Carpathica 55, 207-215.Google Scholar

  • De Leeuw A., Bukowski K., Krijgsman W. & Kuiper K.F. 2010: Age of the Badenian salinity crisis, impact of Miocene climate variability on the circum-Mediterranean region. Geology 38, 715-718.CrossrefGoogle Scholar

  • De Leeuw A., Filipescu S., Maţenco L., Krijgsman W., Kuiper K. & Stoica M. 2012: Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): Implications for Central Paratethys stratigraphy and emplacement of the Tisza-Dacia plate. Global and Planetary Change 103, 82-98. Doi:10.1016/j.gloplacha.2012.04.008CrossrefGoogle Scholar

  • Dellmour R. & Harzhauser M. 2012: The Iváň Canyon, a large Miocene canyon in the Alpine-Carpathian Foredeep. Mar. Petrol. Geol. (2012). Doi: 10.1016/j.marpetgeo.2012.07.001CrossrefGoogle Scholar

  • Filipescu S. & de Leeuw A. 2011: Calibration of several foraminifera biozones in the marine Miocene from Romania. In: Pipík R.K., Starek D. & Staňová S. (Eds.): The 4th International Workshop on the Neogene from the Central and South-eastern Europe. Abstracts and Guide of Excursion, September 12-16, 2011, Banská Bystrica, 28-29. Fornaciari E., Iaccarino S., Mazzei R., Rio D., Salvatorini G., Bossio A. & Monteforti B. 1997: Calcareous plankton biostratigraphy of the Langhian historical stratotype. In: Montanari A., Odin G.S. & Coccioni R. (Eds.): Miocene Stratigraphy: An integrated approach. Developments in Palaeontology and Stratigraphy 15, Elsevier, Amsterdam, 315-341.Google Scholar

  • Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (Eds.) 2012: The Geologic Time Scale 2012. Elsevier, Amsterdam, 1-1144.Google Scholar

  • Grill R. 1943: Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Beckens. Mitt. Reichsanst. Bodenforschung 6, 33-44.Google Scholar

  • Handler R., Ebner F., Neubauer F., Hermann S., Bojar A.-V. & Hermann S. 2006: 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol. Carpathica 57, 483-494.Google Scholar

  • Haq B.U., Hardenbol J. & Vail P.R. 1988: Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. In: Wilgus C.K., Hastings B.S., Posamentier H., van Wagoner J., Ross C.A. & Kendall C.G.St.C. (Eds.): Sea-level changes: An integrated approach. SEPM Spec. Publ. 42, 71-108.Google Scholar

  • Hardenbol J., Thierry J., Farley M.B., Jacquin T., de Graciansky P.-C. & Vail P.R. 1998: Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: de Graciansky P.-C., Hardenbol J., Jacquin T. & Vail P.R. (Eds.): Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM Spec. Publ. 60, 3-13.Google Scholar

  • Harzhauser M. & Piller W. 2004: Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1, 65-86.Google Scholar

  • Harzhauser M. & Piller W. 2007: Benchmark data of a changing sea - Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8-31.Google Scholar

  • Harzhauser M., Piller W., Müllegger S., Grunert P. & Micheels A. 2011: Changing seasonality patterns in Central Europe from Miocene climate optimum to Miocene climate transition deduced from the Crassostrea isotope archive. Global and Planetary Change 76, 77-84.CrossrefGoogle Scholar

  • Hilgen F.J., Abels H.A., Iaccarino S., Krijgsman W., Raffi I., Sprovieri R., Turco E. & Zachariasse W.J. 2009: The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene). Episodes 32, 152-166.Google Scholar

  • Hilgen F.J., Lourens L.J. & Van Dam J.A. 2012: The Neogene period. In: Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M (Eds.): The Geologic Time Scale 2012. Elsevier, Amsterdam, 923-978.Google Scholar

  • Hohenegger J. 2004: Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 217, 115-130.Google Scholar

  • Hohenegger J. & Wagreich M. 2012: Time calibration of sedimentary sections based on insolation cycles using combined cross- correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin, Austria). Int. J. Earth Sci. (Geologische Rundschau) 101, 339-349.CrossrefGoogle Scholar

  • Hohenegger J., Andersen N., Báldi K., Ćorić S., Pervesler P., Rupp Ch. & Wagreich M. 2008: Paleoenvironment of the Early Badenian (Middle Miocene) in the southern Vienna Basin (Austria) - multivariate analysis of the Baden-Sooss section. Geol. Carpathica 59, 461-487.Google Scholar

  • Hohenegger J., Rögl F., Ćorić S., Pervesler P., Lirer F., Roetzel R., Scholger R. & Stingl K. 2009: The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian J. Earth Sci. 102, 102-132.Google Scholar

  • Hohenegger J., Ćorić S. & Wagreich M. 2011: Beginning and division of the Badenian Stage (Middle Miocene, Paratethys). Abstracts 4th International Workshop on the Neogene from the Central and South-Eastern Europe (NCSEE-4), September, 12-16, 2011, Banská Bystrica, Slovak Republic.Google Scholar

  • Holbourn A., Kuhnt W., Schulz M. & Erlenkeuser H. 2004: Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483-487.Google Scholar

  • Holbourn A., Kuhnt W., Schulz M., Flores J.-A. & Andersen N. 2007: Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet. Sci. Lett. 261, 534-550.Google Scholar

  • Iaccarino S.M., Turco Cascella A., Gennari R., Hilgen F.J. & Sagnotti L. 2009: Integrated stratigraphy of La Vedova section (Conero Riviera, Italy), a potential candidate for the Langhian GSSP. In: Barbieri F. (Ed.): Earth system evolution and the Mediterranean Area from 23 Ma to the Present. 13th Congress RCMNS - 2nd-6th September 2009, Abstract Book, Acta Naturalia de “L’Ateneo Parmense” 45, 15-16.Google Scholar

  • Jenkins D.G., Sounders J.B. & Cifelli R. 1981: The relationship of Globigerinoides bisphericus Todd 1954 to Praeorbulina sicana (De Stefani) 1952. J. Foram. Res. 11, 262-267.Google Scholar

  • Kominz M.A., Browning J.V., Miller K.G., Sugarman P.J., Mizintseva S. & Scotese C.R. 2008: Late Cretaceous to Miocene sealevel estimates from the new Jersey and Delaware coastal plain coreholes: an error analysis. Basin Research 20, 211-226.CrossrefGoogle Scholar

  • Kováč M., Baráth I., Harzhauser M., Hlavatý I. & Hudáčková N. 2004: Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour. Forsch.-Inst. Senckenberg 246, 187-212.Google Scholar

  • Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Oszczypko N., Pavelic D., Rögl F., Saftić B., Sliva L. & Studencka B. 2007: Badenian evolution of the Central Parathethys sea: paleogeography, climate and eustatic sea level changes. Geol. Carpathica 58, 579-606.Google Scholar

  • Krézsek C.S. & Filipescu S. 2005: Middle to Late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophysics 410, 437-463.Google Scholar

  • Latal C. & Piller W. 2003: Stable isotope signatures at the Karpatian/ Badenian Boundary in the Styrian Basin. In: Brzobohatý R., Cicha I., Kováč M. & Rögl F. (Eds.): The Karpatian, a Lower Miocene stage of the Central Paratethys. Masaryk University, Brno, 37-48.Google Scholar

  • Lirer F., Harzhauser M., Pelosi N., Piller W.E., Schmid H.P. & Sprovieri M. 2009: Astronomically foreced teleconnection between Paratethyan and Mediterranean sediments during the Middle and Late Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 275, 1-13.Google Scholar

  • Lourens L.J. & Hilgen F. 1997: Long-periodic variations in the Earth’s obliquity and their relation to third-order eustatic cycles and late Neogene glaciations. Quart. Int. 40, 43-52.CrossrefGoogle Scholar

  • Lourens L., Hilgen F., Shackleton N.J., Laskar J. & Wilson J. 2004a: The Neogene period. In: Gradstein F., Ogg J. & Smith A. (Eds.): A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 409-440.Google Scholar

  • Lourens L., Hilgen F., Shackleton N.J., Laskar J. & Wilson J. 2004b: Appendix 2. Orbital tuning calibrations and conversions for the Neogene period. In: Gradstein F., Ogg J. & Smith A. (Eds): A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 469-484.Google Scholar

  • Martini E. 1971: Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A. (Ed.): Proceedings II Planktonic Conference, Rome, 1970, 2, 739-785.Google Scholar

  • Miller K.G., Kominz M.A., Browning J.V., Wright J.D., Mountain G.S., Katz M.E., Sugarman P.J., Cramer B.S., Christie-Blick N. & Pekar S.F. 2005a: The Phanerozoic record of global sealevel change. Science 310, 1293-1298. Miller K.G., Browning J.V., Sugarman P.J., McLaughlin P.P., Kominz M.A., Olsson R.K., Wright J.D., Cramer B.S., Pekar S.F. & Van Sickel W. 2005b: 174AX Leg summary: Sequences, sea level, tectonics, and aquifer resources: Coastal plain drilling. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 174AX (Suppl.), 1-38.Google Scholar

  • Ogg J.G. 2012: Geomagnetic polarity time scale. In: Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (Eds.): The Geologic Time Scale 2012. Elsevier, Amsterdam, 85-113.Google Scholar

  • Oszczypko N. & Oszczypko-Clowes M. 2012: Stages of development in the Polish Carpathian Foredeep Basin. Central European J. Geosci. 4, 138-162.Google Scholar

  • Oszczypko N., Krzywiec P., Popadyuk I. & Peryt T. 2006: Carpathian Foredeep Basin (Poland and Ukraine): Its sedimentary, structural, and geodynamic evolution. In: Golonka J. & Picha F.J. (Eds.): The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Mem. 84, 293-350.Google Scholar

  • Papp A. & Cicha I. 1978: Definition der Zeiteinheit M - Badenien. In: Papp A., Cicha I., Seneš J. & Steininger F. (Eds.): M4 - Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys. 6. VEDA, Bratislava, 47-48.Google Scholar

  • Papp A. & Turnovsky K. 1953: Die Entwicklung der Uvigerinen im Vindobon (Helvet und Torton) des Wiener Beckens. Jb. Geol. Bundesanst. 96, 117-142.Google Scholar

  • Papp A., Grill R., Janoschek R., Kapounek J., Kollmann K. & Turnovsky K. 1968: Zur Nomenklatur des Neogens in Österreich. Verh. Geol. Bundesanst. 1968, 9-27.Google Scholar

  • Papp A., Cicha I., Seneš J. & Steininger F. 1978a: M4 - Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys. 6. VEDA, Bratislava, 1-594.Google Scholar

  • Papp A., Cicha I. & Seneš J. 1978b: Gliederung des Badenien, Faunenzonen und Unterstufen. In: Papp A., Cicha I., Seneš J. & Steininger F. (Eds.): M4 - Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys. 6. VEDA, Bratislava, 49-52.Google Scholar

  • Papp A., Seneš J. & Steininger F. 1978c: Diskussion der Äquivalente des Badenien in Europa. In: Papp A., Cicha I., Seneš J. & Steininger F. (Eds.): M4 - Badenien (Moravien, Wielicien, Kosovien). Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys. 6. VEDA, Bratislava, 55-59.Google Scholar

  • Paulissen W.E., Luthi S.M., Grunert P., Ćorić S. & Harzhauser M. 2011: Integrated high resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna Basin. Geol. Carpathica 62, 155-169.Google Scholar

  • Peryt D. & Gedl P. 2010: Palaeoenvironmental changes preceding the Middle Miocene Badenian salinity crisis in the northern Polish Carpathian Foredeep Basin (Borków quarry) inferred from foraminifers and dinoflagellate cysts. Geol. Quart. 54, 487-508.Google Scholar

  • Peryt T.M. 2006: The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys. Sed. Geol. 188, 379-396.Google Scholar

  • Peryt T.M., Karoli S., Peryt D., Petrichenko O.I., Gedl P., Narkiewicz W., Durkovicova J. & Dobieszynska Z. 1997: Westernmost occurence of the Middle Miocene Badenian gypsum in Central Paratethys (Koberice, Moravia, Czech Republic). Slovak Geol. Mag. 3, 105-120.Google Scholar

  • Piller W., Harzhauser M. & Mandic O. 2007: Miocene Central Paratethys stratigraphy - current status and future directions. Stratigraphy 4, 151-168.Google Scholar

  • Rio D., Cita M.B., Iaccarino S., Gelati R. & Gnaccolini M. 1997: Langhian, Serravallian and Tortonian historical stratotypes. In: Montanari A. et al. (Eds.): Miocene stratigraphy: an integrated approach. Development in Paleontology and Stratigraphy 15, 57-87.Google Scholar

  • Rögl F. 1998: Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99, 279-310.Google Scholar

  • Rögl F., Spezzaferri S. & Ćorić S. 2002: Micropaleontology and biostratigraphy of the Karpatian-Badenian transition (Early- Middle Miocene boundary) in Austria (Central Paratethys). Cour. Forsch.-Inst. Senckenberg 237, 46-67.Google Scholar

  • Rögl F., Ćorić S., Hohenegger J., Pervesler P., Roetzel R., Scholger R., Spezzaferri S. & Stingl K. 2007a: Cyclostratigraphy and transgressions at the Early/Middle Miocene (Karpatian/Badenian) boundary in the Austrian Neogene basins (Central Paratethys). Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Geol. 36, 7-12.Google Scholar

  • Rögl F., Ćorić S., Hohenegger J., Pervesler P., Roetzel R., Scholger R., Spezzaferri S. & Stingl K. 2007b: The Styrian tectonic Phase - a series of events at the Early/Middle Miocene boundary revised and stratified (Styrian Basin, Central Paratethys). Joannea Geol. Paläont. 9, 89-91.Google Scholar

  • Schreilechner M.G. & Sachsenhofer R.F. 2007: High resolution sequence stratigraphy in the eastern Styrian Basin (Miocene, Austria). Austrian J. Earth Sci. 100, 164-184.Google Scholar

  • Selmeczi I., Lantos M., Bohn-Havas M., Nagymarosy A. & Szegö E. 2012: Correlation of bio- and magnetostratigraphy of Badenian sequences from western and northern Hungary. Geol. Carpathica 63, 219-232.Google Scholar

  • Shackleton N.J., Crowhurst S.J., Weedon G.P. & Laskar J. 1999: Astronomical calibration of Oligocene-Miocene time. Philosophical Trans. Roy. Soc. London, Ser. A 357, 1907-1929.Google Scholar

  • Shevenell A.E., Kennett J.P. & Lea D.W. 2004: Middle Miocene southern ocean cooling and antarctic cryosphere expansion. Science 305, 1766-1770.Google Scholar

  • Spezzaferri S., Ćorić S. & Stingl K. 2009: Palaeoenvironmental reconstruction of the Karpatian-Badenian (Late Burdigalien-Early Langhian) transition in the Central Paratethys. A case study from the Wagna Section (Austria). Acta Geol. Pol. 59, 523-544.Google Scholar

  • Stille H. 1924: Grundfragen der vergleichenden Tektonik. Gebrüder Bornträger, Berlin, 1-443.Google Scholar

  • Strauss P., Harzhauser M., Hinsch R. & Wagreich M. 2006: Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol. Carpathica 57, 185-197.Google Scholar

  • Śliwiński M., Bąbel M., Nejbert K., Olszeska-Nejbert D., Gąsiewicz A., Schreiber B.C., Benowitz J.A. & Layer P. 2012: Badenian-Sarmatian chronostratigraphy in the Polish Carpathian Foredeep. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326-328, 12-29.Google Scholar

  • Švábenická L. 2002: Calcareous nannofossils of the Upper Karpatian and Lower Badenian deposits in the Carpathian Foredeep, Moravia (Cech Republic). Geol. Carpathica 53, 197-210.Google Scholar

  • Tomanová-Petrová P. & Švábenická L. 2007: Lower Badenian biostratigraphy and paleoecology: a case study from the Carpathian Foredeep (Czech Republic). Geol. Carpathica 58, 333-352.Google Scholar

  • Turco E., Hilgen F.J., Lourens L.J., Shakleton N.J. & Zachariasse W.J. 2001: Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: High-resolution planktonic foraminiferal and oxygene isotope records from the Mediterranean. Paleoceanography 16, 405-423.CrossrefGoogle Scholar

  • Turco E., Iaccarino S.M., Foresi L., Salvatorini G., Riforgiato F. & Verducci M. 2009: Revisitation of the first steps in Globigerinoides- Praeorbulina lineage. In: Barbieri F. (Ed.): Earth system evolution and the Mediterranean Area from 23 Ma to the present. 13th Congress RCMNS - 2nd-6th September 2009, Abstract Book. Acta Naturalia de “L’Ateneo Parmense” 45, 230-231.Google Scholar

  • Vakarcs G., Hardenbol J., Abreu V.S., Vail P.R., Várnai P. & Tari G. 1998: Oligocene-Middle Miocene depositional sequences of the Central Paratethys and their correlation with regional stages. In: de Graciansky P.-C., Hardenbol J., Jacquin T. & Vail P.R. (Eds.): Mesozoic and cenozoic sequence stratigraphy of European Basins. SEPM Spec. Publ. 60, 209-233.Google Scholar

  • Wade B.S., Pearson P.N., Berggren W.A. & Pälike H. 2011: Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111-142.CrossrefGoogle Scholar

  • Westerhold T., Bickert T. & Röhl U. 2005: Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 217, 205-222.Google Scholar

  • Zalasiewicz J., Cita M.B., Hilgen F., Pratt B.R., Strasser A., Thierry J. & Weissert H. 2013: Chronostratography and geochronology: A proposed realigment. GSA Today 23, 3, 4-8. Google Scholar

About the article

Published Online: 2014-03-11

Published in Print: 2014-02-01

Citation Information: Geologica Carpathica, ISSN (Online) 1336-8052, ISSN (Print) 1335-0552, DOI: https://doi.org/10.2478/geoca-2014-0004.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Michal Kováč, Emő Márton, Nestor Oszczypko, Rastislav Vojtko, Jozef Hók, Silvia Králiková, Dušan Plašienka, Tomáš Klučiar, Natália Hudáčková, and Marta Oszczypko-Clowes
Global and Planetary Change, 2017, Volume 155, Page 133
Michal Kováč, Samuel Rybár, Eva Halásová, Natália Hudáčková, Katarína Šarinová, Michal Šujan, Victoria Baranyi, Marianna Kováčová, Andrej Ruman, Tomáš Klučiar, and Adriena Zlinská
Basin Research, 2017
Andrej Ruman, Samuel Rybár, Natália Hudáčková, Michal Šujan, and Eva Halásová
Facies, 2017, Volume 63, Number 2
János Hír, Márton Venczel, Vlad Codrea, Gertrud E. Rössner, Chiara Angelone, Lars W. van den Hoek Ostende, Valentina V. Rosina, Uwe Kirscher, and Jérôme Prieto
Comptes Rendus Palevol, 2017, Volume 16, Number 3, Page 312
János Hír, Márton Venczel, Vlad Codrea, Chiara Angelone, Lars W. van den Hoek Ostende, Uwe Kirscher, and Jérôme Prieto
Comptes Rendus Palevol, 2016, Volume 15, Number 7, Page 863
Rostislav Brzobohatý, Jiří Kalvoda, Jiří Frýda, and Vojtěch Erban
Geobios, 2016, Volume 49, Number 5, Page 349
Mihovil Brlek, Monika Špišić, Vlatko Brčić, Ivan Mišur, Tomislav Kurečić, Mirjana Miknić, Radovan Avanić, Davor Vrsaljko, and Damir Slovenec
Facies, 2016, Volume 62, Number 3
Eun Young Lee and Michael Wagreich
International Journal of Earth Sciences, 2017, Volume 106, Number 2, Page 687
P. Jiménez-Mejías, E. Martinetto, A. Momohara, S. Popova, S. Y. Smith, and E. H. Roalson
The Botanical Review, 2016, Volume 82, Number 3, Page 258
Martin Košt'ák, Ján Schlögl, Natália Hudáčková, Andreas Kroh, Eva Halásová, Rok Gašparič, Matúš Hyžný, and Gerhard Wanzenböck
Journal of Systematic Palaeontology, 2016, Volume 14, Number 12, Page 1033
B. W. M. van Bakel, A. Dulai, M. Krobicki, M. Hyžný, R. H. B. Fraaije, and J. W. M. Jagt
Crustaceana, 2015, Volume 88, Number 12-14, Page 1457
Dan V. Palcu, Maria Tulbure, Milos Bartol, Tanja J. Kouwenhoven, and Wout Krijgsman
Global and Planetary Change, 2015, Volume 133, Page 346
Andriy Bratishko, Werner Schwarzhans, Bettina Reichenbacher, Yuliia Vernyhorova, and Stjepan Ćorić
Paläontologische Zeitschrift, 2015, Volume 89, Number 4, Page 839
Jérôme Prieto, Lars W. van den Hoek Ostende, János Hír, and László Kordos
Palaeobiodiversity and Palaeoenvironments, 2015, Volume 95, Number 3, Page 431
Katarína Holcová, Juraj Hrabovský, Slavomír Nehyba, Šárka Hladilová, Nela Doláková, and Atilla Demény
Facies, 2015, Volume 61, Number 1
Thomas Wiedl, Mathias Harzhauser, Andreas Kroh, Stjepan Ćorić, and Werner E. Piller
Facies, 2014, Volume 60, Number 4, Page 865

Comments (0)

Please log in or register to comment.
Log in