Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
See all formats and pricing
More options …
Volume 67, Issue 1 (Feb 2016)


Rhinocerotidae from the Upper Miocene deposits of the Western Pannonian Basin (Hungary): implications for migration routes and biogeography

Luca Pandolfi
  • Corresponding author
  • University of Roma Tre, Department of Sciences, section of Geology, Largo S.L. Murialdo 1, 00186 Rome, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mihály Gasparik / Imre Magyar
  • MTA-MTM-ELTE Research Group for Paleontology, H-1431 Budapest, Pf. 137, Hungary
  • MOL Hungarian Oil and Gas Plc., H-1117 Budapest, Október 23. u. 18, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-17 | DOI: https://doi.org/10.1515/geoca-2016-0004


Although the rhinoceros remains have high biochronological significance, they are poorly known or scarcely documented in the uppermost Miocene deposits of Europe. Several specimens collected from the Upper Miocene (around 7.0 Ma, Turolian) deposits of Kávás (Pannonian Basin, Western Hungary), previously determined as Rhinoceros sp., are revised and described in this paper. The postcranial remains of these specimens belong to “Dihoplus” megarhinus (de Christol) on the basis of the morphological and morphometric characters of humerus, radii, metacarpal and metatarsal elements. An overview of rhinoceros remains from several uppermost Miocene localities and the revision of the rhinoceros material from the Pannonian Basin suggest that “D.” megarhinus spread during the latest Miocene from the Pannonian Basin towards Italy. The occurrences of this species in Western Hungary and Italy during the latest Miocene further imply that Rhinocerotini species were biogeographically segregated between Western, Southern and Central Europe.

Keywords: “Dihoplus” megarhinus; postcranium; paleobiogeography; biochronology; latest Miocene; Kávás; Pannonian Basin


  • Alexejew A.K. 1916: Vertebrate fauna of the Novo Elizavetovka Village. [Fauna pozvonochnykh derevni Novo Elizavetovki]. Odessa, Ukraine, 1–453 (in Russian).Google Scholar

  • Ambrosetti P. 1972: Lo scheletro di Dicerorhinus etruscus (Falc.) di Capitone (Umbria meridionale). Geol. Romana 11, 177–198.Google Scholar

  • Angelone C., Colombero S., Esu D., Giuntelli P., Marcolini F., Pavia M., Trenkwalder S., van den Hoek Ostende L.W., Zunino M. & Pavia G. 2011: Moncucco Torinese, a new postevaporitic Messinian fossiliferous site from Piedmont (NW Italy). Neu. Jb. Geol. Paläont., Abh. 259, 89–104.Google Scholar

  • Antoine P.-O. 2002: Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae). Mém. Mus. Nat. Hist. Natur. 188, 1–359.Google Scholar

  • Benda L. 1927: The history of the paleontological excavations at Baltavár in the course of seventy years 1856-1926. Joint Stock Company, Szombathely, 1–64.Google Scholar

  • Bernor R.L., Feibel C. & Viranta S. 2003: The vertebrate locality of Hatvan, Late Miocene (Middle Turolian, MN 12) Hungary. In: Petculescu A. & Ştiucă E. (Eds.): Advances in Vertebrate Paleontology “Hen to Panta”. Romanian Academy, Institute of Speleology “Emil Racovită”, Bucharest, 105–112.Google Scholar

  • Bernor R.L., Scott R.S. & Haile-Selassie Y. 2005: A contribution to the evolutionary history of Ethiopian Hipparionine Horses: Morphometric evidence from the postcranial skeleton. Geodiversitas 27, 1, 133–158.Google Scholar

  • Bernor R.L., Kaiser T., Nelson S. & Rook L. 2011: Systematics and paleobiology of Hippotherium malpassii n. sp. (Equidae, Mammalia) from the latest Miocene of Baccinello V3 (Tuscany, Italy). Boll. Soc. Paleont. Ital. 50, 175–208.Google Scholar

  • Brandt J.F. 1878: Tentamen synopseos rhinocerotidum viventium, et fossilium. Mém. Acad. Imper. Sci. St. Petersbourg 26, 5, 1–66.Google Scholar

  • Cerdeño E. 1992: Spanish Neogene rhinoceroses. Palaeontology 35, 2, 297–308.Google Scholar

  • Cerdeño E. 1993: Remarks on the Spanish Plio-Pleistocene Stephanorhinus etruscus (Rhinocerotidae). C.R. Acad. Sci. Paris 317, s. II, 1363–1367.Google Scholar

  • Cerdeño E. 1995: Cladistic analysis of the family Rhinocerotidae (Perissodactyla). Amer. Mus. Novit. 3143, 1–25.Google Scholar

  • Cerdeño E. 1998: Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 13–34.Google Scholar

  • Colombero S., Angelone C., Bonelli E., Carnevale G., Cavallo O., Delfino M., Giuntelli P., Mazza P., Pavia G., Pavia M. & Repetto G. 2014: The upper Messinian assemblages of fossil vertebrate remains of Verduno (NW Italy): Another brick for a latest Miocene bridge across the Mediterranean. Neu. Jb. Geol. Paläont., Abh. 272, 3, 287–324.Google Scholar

  • Croizet J.B. & Jobert A. 1828: Recherches sur les ossements fossiles du département du Puy-de-Dôme. Adolphe Delahays, Paris, 1–226.Google Scholar

  • Cuvier G. 1822: Recherches sur les ossemens fossiles, où l’on rétablit les caractères de plusieurs animaux, dont les révolutions du globe ont détruit les espèces. Nouvelle édition (2ème), Tome 3. G. Dufour et E. d’Ocagne, Paris, 1–412.Google Scholar

  • de Christol J. 1834: Recherches sur les caractères des grandes espèces de Rhinocéros fossiles. Ann. Sci. Natur. Paris 2, 4, 44–112.Google Scholar

  • De Giuli C. 1989: The rodents of the Brisighella Latest Miocene fauna. Boll. Soc. Paleont. Ital. 28, 23, 197–212.Google Scholar

  • Deng T., Wang X., Fortelius M., Li Q., Wang Y., Tseng Z.J., Takeuchi G.T., Saylor J.E., Saila L.K. & Xie G. 2011: Out of Tibet: Pliocene Woolly Rhino suggests high-plateau origin of Ice Age Megaherbivores. Science 333, 1285–1288.Google Scholar

  • Ďurišová A. 2004: Rhinoceroses. In: Sabol M. (Ed.): Early Villanyian site of Hajnáčka I (southern Slovakia). Gemer-Malohont Museum, Rimavská Sobota, 98–110.Google Scholar

  • Falconer H. 1868: On the European Pliocene and Post-Pliocene species of the genus Rhinoceros. In: Murchison C. & Hardwicke R. (Eds.): Palaeontological Memoirs and Notes of the late Hugh Falconer, 2: Mastodon, Elephant, Rhinoceros, Ossiferous Caves, Primeval Man and His Cotemporaries. Spottiswoode and Co., London, 309–403.Google Scholar

  • Fisher G. 1814: Zoognosia tabulis synopticis illustrata, III: Quadrupedum reliquorum, cerotum et monotrymatum descriptionem continens. Typis Nicolai Sergeides Vsevolozsky, Mosquae, 1–694.Google Scholar

  • Fortelius M., Mazza P. & Sala B. 1993: Stephanorhinus (Mammalia: Rhinocerotidae) of the Western European Pleistocene, with a revision of S. etruscus (Falconer, 1868). Palaeontogr. Italica 80, 63–155.Google Scholar

  • Fukuchi A., Nakaya H., Takai M. & Ogino S. 2009: A preliminary report on the Pliocene rhinoceros from Udunga, Transbaikalia, Russia. Asian Palaeoprimat. 5, 61–98.Google Scholar

  • Gasparik M. 2001: Neogene proboscidean remains from Hungary; an overview. Fragm. Palaeontol. Hungarica 19, 61–77.Google Scholar

  • Gasparik M. 2004: Neogene and Early Pleistocene proboscidean remains from Hungary [Magyarországi neogén és alsó-pleisztocén Proboscidea maradványok]. PhD. Thesis, Eötvös Loránd University of Sciences, Budapest, 1–129 (in Hungarian).Google Scholar

  • Geraads D. 1988: Révision des Rhinocerotidae (Mammalia) du Turolien de Pikermi: Comparaison avec les formes voisines. Ann. Paléont. 74, 13–41.Google Scholar

  • Geraads D. & Spassov N. 2009: Rhinocerotidae (Mammalia) from the Late Miocene of Bulgaria. Paläeontographica Abt. A 287, 99–122.Google Scholar

  • Giaourtsakis I. 2009: The Late Miocene Mammal Faunas of the Mytilinii Basin, Samos Island, Greece: New Collection: 9. Rhinocerotidae. Beitr. Paläont. 31, 157–187.Google Scholar

  • Giaourtsakis I., Theodorou G., Roussiakis S., Athanassiou A. & Iliopoulos G. 2006: Late Miocene horned rhinoceroses (Rhinocerotinae, Mammalia) from Kerassia (Euboea, Greece). Neu. Jb. Geol. Paläont., Abh. 239, 3, 367–398.Google Scholar

  • Gibbard P.L., Head M.J. & Walker M.J.C. 2010: Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J. Quat. Science 25, 2, 96–102.Google Scholar

  • Gloger C.W.L. 1841: Gemeinnuetziges Hand- und Hilfsbuch der Naturgeschichte. Aug. Schulz and Co 1, Breslau, 1–496.Google Scholar

  • Gray J.E. 1821: On the natural arrangement of vertebrose animals. London Medical Rep. 15, 296–310.Google Scholar

  • Groves C.P. 1983: Phylogeny of the living species of rhinoceros. Z. Zool. Syst. Evolut.-forsch. 21, 293–313.Google Scholar

  • Guérin C. 1972: Une nouvelle espèce de Rhinocéros (Mammalia, Perissodactyla) à Vialette (Haute-Loire, France) et dans d’autres gisements du Villafranchien Inférieur Européen: Dicerorhinus jeanvireti n. sp.. Doc. Lab. Géol. Fac. Sci. Lyon 49, 53–161.Google Scholar

  • Guérin C. 1980: Les rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pleistocène supérieur en Europe occidentale: comparaison avec les espèces actuelles. Doc. Lab. Géol. Fac. Sci. Lyon 79, 1–1182.Google Scholar

  • Guérin C. 1982: Les Rhinocerotidae (Mammalia, Perissodactyla) du Miocène terminal au Pleistocène supérieur d’Europe occidentale compares aux espèces actuelles: tendences évolutives et relations phylogénétiques. Geobios 15, 4, 599–605.CrossrefGoogle Scholar

  • Guérin C. 2004: Les rhinocéros (Mammalia, Perissodactyla) du gisement Villafranchien moyen de Saint-Vallier (Drôme). Geobios 37, 259–278.CrossrefGoogle Scholar

  • Guérin C. & Santafé-Llopis J.V. 1978: Dicerorhinus miguelcrusafonti nov. sp., une nouvelle espèce de rhinocéros (Mammalia, Perissodactyla) du gisement pliocène supérieur de Layna (Soria, Espagne) et de la formation pliocène de Perpignan (Pyrénées-Orientales, France). Geobios 11, 4, 457–491.CrossrefGoogle Scholar

  • Guérin C. & Sen S. 1998: Rhinocerotidae. In: Sen S. (Ed.): Le gisement de vertébrés pliocènes de Çalta, Ankara, Turquie. Geodiversitas 20, 3, 397–407.Google Scholar

  • Guérin C. & Tsoukala E. 2013: The Tapiridae, Rhinocerotidae and Suidae (Mammalia) of the Early Villafranchian site of Milia (Grevena, Macedonia, Greece). Geodiversitas 35, 2, 447–489.CrossrefGoogle Scholar

  • Guérin C., Ballesio R. & Meon-Vilain H. 1969: Le Dicerorhinus megarhinus (Mammalia, Rhinocerotidae) du Pliocène de Saint-Laurent-des-Arbres (Gard). Doc. Lab. Géol. Fac. Sci. Lyon, Notes et Memoires 31, 55–145.Google Scholar

  • Haas J., Budai T., Csontos L., Fodor L. & Konrád Gy. 2010: Pre-Cenozoic geological map of Hungary, 1:500,000. Geol. Inst. Hungary.Google Scholar

  • Hays I. 1834: Descriptions of the specimens of interior maxillary bones of Mastodons in the Cabinet of the American Philosophical Society, with remarks on the genus Tetracaulodon. Trans. Amer. Philos. Soc. N.S. IV, 317–339.Google Scholar

  • Heissig K. 1989: The Rhinocerotidae. In: Prothero D.R. & Schoch R.M. (Eds.): The evolution of Perissodactyls. Oxford Monographs on Geology and Geophysics 15, 399–417.Google Scholar

  • Heissig K. 1996: The stratigraphical range of fossil rhinoceroses in the Late Neogene of Europe and Eastern Mediterranean. In: Bernor R.L., Fahlbush V. & Mittman H.-W. (Eds.): The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, 339–347.Google Scholar

  • Heissig K. 1999: Family Rhinocerotidae. In: Rössner G.E. & Heissig K. (Eds.): The Miocene Land Mammals of Europe. F. Pfeil, Munich, 175–188.Google Scholar

  • Hürzeler J. & Engesser B. 1976: Les faunes de mammifères néogènes du bassin de Baccinello (Grosseto, Italie). C.R. Acad. Sci. Paris 293, 333–336.Google Scholar

  • Juhász Gy. 1991: Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geol. Hung. 34, 53–72.Google Scholar

  • Juhász Gy., Pogácsás Gy., Magyar I. & Vakarcs G. 2007: Tectonic versus climatic control on the evolution of fluvio-deltaic systems in a lake basin, Eastern Pannonian Basin. Sed. Geol. 202, 72–95.Google Scholar

  • Kaup J.-J. 1832: Über Rhinoceros incisivus Cuvier und eine neue Art, Rhinoceros schleiermacheri. Isis 8, 898–904.Google Scholar

  • Kaiser T.M. & Bernor R.L. 2006: The Baltavar Hippotherium: A mixed feeding Upper Miocene hipparion (Equidae, Perissodactyla) from Hungary (East-Central Europe). Beitr. Paläont. 30, 241–267.Google Scholar

  • Kordos L. 1992: Evolution and biochronology of the Tertiary and Quaternary mammal fauna of Hungary [Magyarország harmad- és negyedidőszaki emlősfaunájának fejlődése és biokronológiája]. DSc. Thesis, Hungarian Academy of Sciences, Budapest, 1–103 (in Hungarian).Google Scholar

  • Kormos T. 1914: Über die Resultate meiner Ausgrabungen im Jahr 1913. Jb. Kgl. Ungar. Geol. Reichsanst. 1913, 559–604.Google Scholar

  • Kretzoi M. 1942: Bemerkungen zum System der nachmiozänen Nashorn-Gattungen. Földt. Közl. 72, 4–12, 309–318.Google Scholar

  • Kretzoi M. 1952: Die Raubtiere der Hipparionfauna von Polgárdi. A Magyar Állami Földtani Intézet évkönyve 40, 3, 1–35.Google Scholar

  • Kretzoi M. 1982: Wichtigere Streufunde aus der Wirbeltierpaläontologischen Sammlung der Ungarischen Geologischen Anstalt — 7. Mitteilung [Fontosabb szórványleletek a MÁFI Gerincesgyűjteményében — 7. közlemény]. A Magyar Állami Földtani Intézet évi jelentése az 1980. évről, 385–394 (in Hungarian with German summary).Google Scholar

  • Kretzoi M. 1983: Wirbeltier-Indexformen im ungarischen Jungneozoikum. Hipparion [Gerinces indexfajok felső-neozói rétegtanunkban. Hipparion]. A Magyar Állami Földtani Intézet évi jelentése az 1981. évről, 513–521 (in Hungarian with German summary).Google Scholar

  • Kretzoi M. 1985: Sketch of the biochronology of the Late Cenozoic in Central Europe. In: Kretzoi M. & Pécsi M. (Eds.): Problems of the Neogene and Quaternary in the Carpathian Basin. Akadémiai Kiadó, Budapest, 3–20.Google Scholar

  • Kretzoi M. 1987. Terrestrische Biochronologie/Stratigraphie des Karpathenbeckens im Pannonien (s. l.). A Magyar Állami Földtani Intézet évkönyve 69, 409–422.Google Scholar

  • Lacombat F. & Mörs T. 2008: The northernmost occurrence of the rare Late Pliocene rhinoceros Stephanorhinus jeanvireti (Mammalia, Perissodactyla). Neu. Jb. Geol. Paläont,. Abh. 249, 2, 157–165.Google Scholar

  • Magyar I., Lantos M., Ujszászi K. & Kordos L. 2007: Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geol. Carpathica 58, 3, 277–290.Google Scholar

  • Magyar I., Radivojevic D., Sztanó O., Synak R., Ujszászi K. & Pócsik M. 2013: Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Glob. Planet. Change 103, 168–173.Google Scholar

  • Markov G. 2008: The Turolian proboscideans (Mammalia) of Europe: preliminary observations. Hist. Natur. Bulgarica 19, 153–178.Google Scholar

  • Mazo A.V. 1995: Stephanorhinus etruscus (Perissodactyla, Mammalia) en el Villafranquiense inferior de Las Higueruelas, Alcolea de Calatrava (Ciudad Real). Estudios Geol. 51, 285–290.Google Scholar

  • Mucha B.B. 1980: A new species of yoke-toothed mastodont from the Pliocene of Southwest USSR. In: Quaternary and Neogene faunas and floras of Moldavskaya SSR. Shtiintsa, Kishinev, 19–26 (in Russian).Google Scholar

  • Osborn H.F. 1900: Phylogeny of the rhinoceroses of Europe. Bull. Am. Mus. Nat. Hist. 13, 229–267.Google Scholar

  • Owen R.M. 1848: Description of teeth and proportion of jaws of two extinct Anthracotherioid quadrupeds (Hyopotamus vectianus and Hyopotamus bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight: with an attempt to develop Cuvier’s idea of the classification of pachyderms by the number of their toes. Quart. J. Geol. Soc. London 4, 103–141.Google Scholar

  • Pandolfi L. 2013: New and revised occurrences of Dihoplus megarhinus (Mammalia, Rhinocerotidae) in the Pliocene of Italy. Swiss J. Palaeont. 132, 239–255.Google Scholar

  • Pandolfi L. 2015a: Persiatherium rodleri, gen. et sp. nov. (Mammalia, Rhinocerotidae) from the upper Miocene of Maragheh (northwestern Iran). J. Vertebr. Paleontol. DOI: 10.1080/02724634.2015.1040118.CrossrefGoogle Scholar

  • Pandolfi L. 2015b: Sistematica e filogenesi dei Rhinocerotini (Mammalia, Rhinocerotidae). Tesi di Dottorato, Università degli Studi di Roma Tre, Roma, ciclo XXVII, 1–319 (in Italian).Google Scholar

  • Pandolfi L. & Marra F. 2015: Rhinocerotidae (Mammalia, Perissodactyla) from the chrono-stratigraphically constrained Pleistocene deposits of the urban area of Rome (Central Italy). Geobios 48, 2, 147–167.CrossrefGoogle Scholar

  • Pandolfi L. & Petronio C. 2011: Stephanorhinus etruscus (Falconer, 1868) from Pirro Nord (Apricena, Foggia, Southern Italy) with notes on the late Early Pleistocene rhinoceroses of Italy. Riv. Ital. Paleont. Stratigr. 117, 1, 173–187.Google Scholar

  • Pandolfi L. & Tagliacozzo A. 2015: Stephanorhinus hemitoechus (Mammalia, Rhinocerotidae) from the Late Pleistocene of Valle Radice (Sora, Central Italy) and re-evaluation of the morphometric variability of the species in Europe. Geobios 48, 2, 169–191.CrossrefGoogle Scholar

  • Pandolfi L., Grossi F. & Frezza V. 2015a: New insights into the Pleistocene deposits of Monte delle Piche, Rome, and remarks on the biochronology of continental Hippopotamus (Mammalia, Hippopotamidae) and Stephanorhinus etruscus (Mammalia, Rhinocerotidae) in Italy. Estudios Geol. 71, 1, DOI: 10.3989/egeol.41796.337.CrossrefGoogle Scholar

  • Pandolfi L., Gasparik M. & Piras P. 2015b: Earliest occurrence of “Dihoplus” megarhinus (Mammalia, Rhinocerotidae) in Europe (Late Miocene, Pannonian Basin, Hungary). Ann. Paléont. 101, 4, 325–339.Google Scholar

  • Pandolfi L., Kotsakis T., Maiorino L., Petronio C. & Piras P. 2014: Systematics and Phylogeny of Rhinocerotini (Mammalia, Rhinocerotidae). Society of Vertebrate Paleontology 74th Annual Meeting, Berlin 5-8 November 2014, Abstract Book, 201.Google Scholar

  • Pethő G. 1885: Über die Fossilien Säugethier-Überreste von Baltavár. Jb. Kgl. Ungar. Geol. Reichsanst. 1884, 63–73.Google Scholar

  • Radulescu C. & Samson P.M. 1985: Pliocene and Pleistocene mammalian biostratigraphy in South-Eastern Transylvania (Romania). Trav. Inst. Spéol. “Emile Racovitza”, Bucuresti XXIV, 85–95.Google Scholar

  • Simonelli V. 1897: I rinoceronti fossili del museo di Parma. Palaeontogr. Italica 3, 89–136.Google Scholar

  • Suess E. 1861: Über die grossen Raubthiere der österreichischen Tertiär-Ablagerungen. Sitzungsber. K. Akad. Wiss., Math.-Naturwiss. Kl. 43, 217–235.Google Scholar

  • Šujan M., Rybár S., Šarinová K., Kováč M., Vlačiky M. & Zervanová J. 2013: Uppermost Miocene to Quaternary accumulation history at the Danube Basin eastern flanks. In: Fodor L. & Kövér Sz. (Eds.): 11th Meeting of the Central European Tectonic Studies Group (CETeG). Abstract book, Geological and Geophysical Institute of Hungary, Budapest, 66–68.Google Scholar

  • Sztanó O., Szafián P., Magyar I., Horányi A., Bada G., Hughes D.W., Hoyer D.L. & Wallis R.J. 2013a: Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Glob. Planet. Change 103, 149–167.Google Scholar

  • Sztanó O., Magyar I., Szónoky M., Lantos M., Müller P., Lenkey L., Katona L. & Csillag G. 2013b: Tihany Formation in the surroundings of Lake Balaton: type locality, depositional setting and stratigraphy. Földt. Közl. 143, 7398 (in Hungarian).Google Scholar

  • Titov V.V. 2008: Late Pliocene large mammals from Northeastern Sea of Azov Region. SSC RAS Publishing, Rostov-on-Don, 1–264 (in Russian).Google Scholar

  • Vlačiky M., Sliva Ľ., Tóth Cs., Karol M. & Zervanová J. 2008: The fauna and sedimentology of the locality Nová Vieska (Villafranchian, SR) [Fauna a sedimentológia lokality Nová Vieska (vilafrank, SR)]. Acta Mus. Morav., Sci. Geol. 93, 229–244 (in Slovak with English summary).Google Scholar

  • Wagner A. 1857: Neue Beiträge zur Kenntniss der fossilen Säugthier-Ueberreste von Pikermi. Abh. Köln. Bayer. Akad. Wissensch. II. Cl., 8, 1, 109–158.Google Scholar

  • Wijbrans J., Németh K., Martin U. & Balogh K. 2007: 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J. Volcanol. Geotherm. Res. 164, 193–204.Google Scholar

About the article

Received: 2015-04-22

Accepted: 2015-12-08

Published Online: 2016-03-17

Published in Print: 2016-02-01

Citation Information: Geologica Carpathica, ISSN (Online) 1336-8052, DOI: https://doi.org/10.1515/geoca-2016-0004.

Export Citation

© 2016 Geologica Carpathica. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaokang Lu, Xueping Ji, Sukuan Hou, Shiqi Wang, Qinqin Shi, Shaokun Chen, Boyang Sun, Yikun Li, Yu Li, Tengsong Yu, and Wenqi Li
Historical Biology, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in