Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geologica Carpathica

The Journal of Geological Institute of Slovak Academy of Sciences

6 Issues per year

IMPACT FACTOR 2016: 1.358
5-year IMPACT FACTOR: 1.402

CiteScore 2016: 1.49

SCImago Journal Rank (SJR) 2016: 0.697
Source Normalized Impact per Paper (SNIP) 2016: 0.957

Open Access
See all formats and pricing
More options …
Volume 67, Issue 5


Age and origin of fluorapatite-rich dyke from Baranec Mt. (Tatra Mts., Western Carpathians): a key to understanding of the post-orogenic processes and element mobility

Aleksandra Gawęda / Krzysztof Szopa / David Chew
  • Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Urs Klötzli / Axel Müller / Magdalena Sikorska / Paulina Pyka
Published Online: 2016-11-02 | DOI: https://doi.org/10.1515/geoca-2016-0026


On the southeastern slope of the Baranec Mount in the Western Tatra Mountains (Slovakia) an apatite-rich pegmatite-like segregation was found in the subvertical fault zone cutting metapelitic rocks. Two zones: felsic (F) and mafic (M) were found, differing in mineral assemblages and consequently in chemistry. Fluorapatite crystals yield a LA-ICP-MS U-Pb age of 328.6 ± 2.4 Ma. A temperature decrease from 634 °C to 454 °C at a pressure around 500 to 400 MPa with oxygen fugacity increasing during crystallization are the possible conditions for formation of the pegmatite-like segregation, while secondary alterations took place in the temperature range of 340 – 320 °C. The Sr-Nd isotope composition of both apatite and whole rock point toward a crustal origin of the dike in question, suggesting partial melting of (P, F, H2O)-rich metasedimentary rocks during prolonged decompression of the Tatra Massif. The original partial melt (felsic component) was mixed with an external (F, H2O)-rich fluid, carrying Fe and Mg fluxed from more mafic metapelites and crystallizing as biotite and epidote in the mafic component of the dyke.

Keywords: dyke; apatite; U-Pb apatite age; Tatra Mountains


  • Armbruster T., Bonazzi P., Akasaka M., Bermanec V., Chopin C., Giere R., Heuss-Aussbichler S., Liebcher A., Manchetti S., Pan Y. & Pasero M. 2006: Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 18, 551–567.CrossrefGoogle Scholar

  • Bailey S.W. 1988: Chlorites: Structures and crystal chemistry. In: Bailey S.W. (Ed.): Hydrous Phyllosilicates (Exclusive of Micas). Reviews in Mineralogy 19, 347–403.Google Scholar

  • Bea F., Fershater G. & Crretge L.G. 1992: The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos 29, 43-56.CrossrefGoogle Scholar

  • Brown W.L. & Parsons I. 1994: Feldspars in igneous rocks. In: Parsons I. (Ed): Feldspars and Their Reactions. NATO ASI Series, C 421, Kluwer Academic Publishers, Dordrecht, 449–499.Google Scholar

  • Burda J. & Dzierżanowski P. 2005: Electron microprobe dating of monazite from migmatitic gneiss from the Western Tatra Mts.: preliminary results. Mineralogical Society of Poland – Special Papers, 25, 277–280.Google Scholar

  • Burda J. & Gawęda A. 2009: Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110, 373–385.CrossrefGoogle Scholar

  • Burda J., Gawęda A. & Klötzli U. 2011: Magma hybridization in the Western Tatra Mountains granitoid intrusion (S-Poland, Western Carpathians). Mineral. Petrol. 103, 19–36.CrossrefGoogle Scholar

  • Burda J., Gawęda A. & Klötzli U. 2013a: U-Pb zircon age of the youngest magmatic activity in the High Tatra granite. Geochronometria 40, 2, 134–144.CrossrefGoogle Scholar

  • Burda J., Gawęda A. & Klötzli U. 2013b: Geochronology and petrogenesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (Central Western Carpathians). Geol. Carpath. 64, 6, 419–435.CrossrefGoogle Scholar

  • Burda J., Gawęda A., Golonka J., Majka J., Wiedenbeck M., & Pyka P. 2015: Rheic Ocean history imprinted in zircon from metabasite: a case of the Western Tatra Mountains, Poland/Slovakia. Mineralogia – Spec. Pap, 44, 30.Google Scholar

  • Cathelineau M. & Nieva D. 1985: A chlorite solid solution geothermometer, The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 91, 235–244.CrossrefGoogle Scholar

  • Černý P. & Ercit T.S. 2005: The classification of granitic pegmatites revisited. Can. Mineral. 43, 2005–2026.CrossrefGoogle Scholar

  • Chamberlain K.R. & Bowring S.A. 2000: Apatite-feldspar U-Pb thermochronometer: A reliable, mid-range (450 °C), diffusion controlled system. Chem. Geol. 172, 173–200.Google Scholar

  • Chen D.-L., Liu L., Sun Y., Sun W.-D., Zhu X.-H., Liu X.-M. & Guo C.-L. 2012: Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China: partial melting during exhumation. Lithos 136–139, 187–200.Google Scholar

  • Chew D.M. & Donelick R.A. 2012: Combined apatite fission track and U-Pb dating by LA-ICPMS and future trends in apatite provenance analysis. In: Sylvester P. (Ed.): Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineral. Assoc. Canada, 219–248.Google Scholar

  • Chew D.M., Petrus J.A. & Kamber B.S. 2014: U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 363, 185–199.Google Scholar

  • Cochrane R., Spikings R.A., Chew D., Wotzlaw J.-F., Chiaradia M., Tyrrell S., Schaltegger U. & Van der Lelijl R. 2014: High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 127, 39–56.CrossrefGoogle Scholar

  • Deditius A. 2004: Petrology and isotopic age of the muscovite blasthesis from the mylonitic zones in the crystalline rocks of the Western Tatra Mountains). Geologia 16, University of Silesia publishing House, 133–152. (in Polish with English abstract)Google Scholar

  • Demartis M., Pinotti L.P., Coniglio J.E., D'Eramo F.J., Tubia J.M., Aragon E., Agulleiro Insula L.A. 2011: Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Cordoba, Argentina). J. Struct. Geol. 33, 1334–1346.CrossrefGoogle Scholar

  • Druguet E., Czeck D.M., Carreras J. & Castaño L.M. 2008: Emplacement and deformation features of syntectonic leucocratic veins from Rainy Lake zone (Western Superior Province, Canada). Precambrian Res. 163, 384–400.Google Scholar

  • Flem B. & Müller A. 2012: In situ analysis of trace elements in quartz using laser ablation inductively coupled mass spectrometry. In: Götze J, Möckel R. (Eds.): Quartz deposits — Mineralogy and Analytics. Springer Verlag, 219–236.Google Scholar

  • Flem B., Larsen R.B., Grimstvedt A. & Masfeld J. 2002: In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem. Geol. 182, 237–247.Google Scholar

  • Fuhrman M.L. & Lindsley D.H. 1988: Ternary-feldspar modeling and thermometry. Am. Mineral. 73, 201–215.Google Scholar

  • Gawęda A. 1993: Structure, mineral composition and origin of pegmatites from the Polish part of the Western Tatra Mountains. Archiwum Mineralogiczne 49, 2, 113–144 (in Polish with English abstract).Google Scholar

  • Gawęda A. 1995: Geochemistry and Rb/Sr isochron age of pegmatites from the Western Tatra Mts. (S-Poland). Geol. Carpath. 46, 95–99.Google Scholar

  • Gawęda A. 2008: Apatite-rich enclave in the High Tatra granite, Western Carpathians: petrological and geochronological study. Geol. Carpath. 59, 4, 295–306Google Scholar

  • Gawęda A. 2009: Enclaves in the High Tatra granite. Univ. Silesia Publ. House, Monograph Ser. 2637, Katowice, 1–180 (in Polish with English abstract).Google Scholar

  • Gawęda A. & Włodyka R. 2012: The origin of post-magmatic Ca-Al minerals in granite-diorite mingling zones: the Tatra granitoid intrusion, Western Carpathians. N. Jb. Mineral. Abh. 190, 1, 29–47.Google Scholar

  • Gawęda A., Pieczka A. & Kraczka J. 2002: Tourmalines from the Western Tatra Mountains (Central Western Carpathians): their characteristics and petrogenetic importance. Eur. J. Mineral. 14, 943–955.CrossrefGoogle Scholar

  • Gawęda A., Müller A., Stein H., Kądziołko-Gaweł M. & Mikulski S. 2013: Age and origin of the tourmaline-rich hydraulic breccias in the Tatra Granite, Western Carpathians. J. Geosci. 58, 133–148.CrossrefGoogle Scholar

  • Gawęda A., Szopa K. & Chew D. 2014: LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity. Geochronometria 41, 306–314.CrossrefGoogle Scholar

  • Gawęda A., Szopa K. & Chew D. 2015: Variscan post-collisional cooling and uplift of the Tatra Mountains constrained by U-Pb apatite and titanite dating. Mineralogia — Spec. Pap. 44, 38.Google Scholar

  • Gawęda A., Burda J., Klötzli U., Golonka J. & Szopa K. 2016: Episodic construction of the Tatra granitoid intrusion (Central Western Carpathians, Poland/Slovakia): consequences for the geodynamics of Variscan collision and Rheic Ocean closure. Int. J. Earth Sci. 105, 1153–1174.CrossrefGoogle Scholar

  • Götze J., Plötze M. & Habermann D. 2001: Origin, spectra characteristics and practical applications of the cathodoluminescence (CL) of quartz — a review. Mineral. Petrol. 71, 225–250.CrossrefGoogle Scholar

  • Harlov D., Tropper P., Seifert W., Nijland T. & Förster H.J. 2006: Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of ƒH2O and ƒO2. Lithos 88, 72–84.CrossrefGoogle Scholar

  • Jourdan A.-L., Vennemann T.W., Mullis J., Ramseyer K. & Spiers C.J. 2009: Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. Eur. J. Mineral. 21, 219–231.CrossrefGoogle Scholar

  • Kohút M. & Janák M. 1994: Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geol. Carpath. 45, 301–311.Google Scholar

  • Kohút M. & Sherlock S. 2003: Laser microprobe 40Ar–39Ar analysis of pseudotachylyte and host-rocks from the Tatra Mountains, Slovakia: evidence for late Palaeogene seismic/tectonic activity. Terra Nova 15, 6, 417–424.CrossrefGoogle Scholar

  • Kohút M. & Siman P. 2011: The Goryczkowa granitic type — SHRIMP dating of an original granodiorite-tonalite variety. Mineralogia — Spec. Pap, 38, 113–114.Google Scholar

  • Kohút M., Poller U., Gurk Ch. & Todt W. 2008: Geochemistry and U-Pb detrital zircon ages of metasedimentary rocks of the Lower Unit, Western Tatra Mountains (Slovakia). Acta Geol. Polon. 58, 371–384.Google Scholar

  • Kohút M., Uher P., Putiš M., Broska I., Siman P., Rodionov N. & Sergeev S. 2010: Are there any differences in age of the two principal Hercynian (I- & S-) granite types from the Western Carpathians? — A SHRIMP approach. In: Kohút M. (Ed.): Dating of minerals and rocks, metamorphic, magmatic and metallogenetic processes, as well as tectonic events. Conferences, Symposia & Seminars, ŠGUDŠ, Bratislava, 17–18.Google Scholar

  • Kranidiotis P. & MacLean W.H. 1987: Systematics of chlorite alteration at Phelps Dodge massive sulphide deposit, Matagami, Quebec. Econ. Geol. 82, 1898–1911.CrossrefGoogle Scholar

  • Liebscher A., Franz G., Frei D. & Dulski P. 2007: High-pressure melting of eclogite and the PTX history of tonalitic to trondhjemitic zoisite-pegmatites, Münchberg Massif, Germany. J. Petrol. 48, 1001–1019.CrossrefGoogle Scholar

  • London D. 2009: The origin of primary textures in granitic pegmatites. Can. Mineral. 47, 697–724.CrossrefGoogle Scholar

  • Lü Z., Zhang L., Du J., Yang X., Tian Z. & Xia B. 2012: Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: fluid processes and elemental mobility during exhumation in a cold subduction zone. Lithos 136–139, 168–186.Google Scholar

  • Macpherson C.G., Dreher S.T. & Thirlwall M.F. 2006: Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 243, 581–593.Google Scholar

  • Massone H.J. & Schreyer W. 1987: Phengite geobarometry based on the limited assemblage with K-feldspar, phlogopite and quartz. Contrib. Mineral. Petrol. 96, 212–224.CrossrefGoogle Scholar

  • Miller J.A., Buick I.S., Cartwright I. & Barnicoat A.C. 2002: Fluid processes during the exhumation of high-P metamorphic belts. Miner. Mag. 66, 93–119.Google Scholar

  • Morozewicz K. 1914: Über die Tatragranite. N Jb Geol Paläontol Abh 39, 289–345.Google Scholar

  • Moussallam Y., Schneider D.A., Janák M., Thoni M. & Holm D.K. 2012: Heterogeneous extrusion and exhumation of deep-crustal Variscan assembly: Geochronology of the Western Tatra Mountains, northern Slovakia. Lithos 144–145, 88–108.Google Scholar

  • Moyen J-F. 2009: High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 112, 556-574.CrossrefGoogle Scholar

  • Müller A., Wiedenbeck M., van der Kerkhof A.M., Kronz A. & Simon K. 2003: Trace elements in quartz — a combined electron microprobe, secondary ion mass spectrometry, laser ablation ICP-MS, and cathodoluminescence study. Eur. J. Mineral. 15, 747–763.CrossrefGoogle Scholar

  • Müller A., Herrington R., Armstrong R., Seltman R., Kirwin D.J., Stenina N.G. & Kronz A. 2010: Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineral. Deposita 45, 707–727.CrossrefGoogle Scholar

  • Ondrejka M., Uher P., Putiš M., Broska I., Bačik P., Konečny P. & Schmiedt I. 2012: Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example of the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos 142–143, 245–255.Google Scholar

  • Paton C., Helistrom J., Paul B., Woodhead J. & Herqt J. 2011: Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 26, 2508–2518.CrossrefGoogle Scholar

  • Petrík I., Broska I., Lipka J. & Siman P. 1995: Granitoid allanite-(Ce): substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol. Carpath. 46, 2, 79-94.Google Scholar

  • Petrus J.A. & Kamber B.S. 2012: VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research 36, 3, 247–270.Google Scholar

  • Poller U. & Todt W. 2000: U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Transact. Royal Soc. Edinburgh: Earth. Sci. 91, 235–243.Google Scholar

  • Poller U., Janák M., Kohút M. & Todt W. 2000: Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int. J. Earth Sci. 89, 336–349.CrossrefGoogle Scholar

  • Puziewicz J. & Johannes W. 1988: Phase equilibria and compositions of Fe-Mg-Al minerals and melts in water-saturated peraluminous granitis systems. Contrib. Mineral. Petrol. 100, 156–168.CrossrefGoogle Scholar

  • Pyka P., Szopa K. & Gawęda A. 2013: Megacrysts of kyanite from Baranec Mt., Western Tatra Mountains, Slovakia. Mineralogia 44, 1–2, 35–41.CrossrefGoogle Scholar

  • Pyka P., Gawęda A., Szopa K., Müller A. & Sikorska M. 2014: Petrogenesis of kyanite-quartz segregations in mica schists of the Western Tatra Mountains (Slovakia). Mineralogia 45, 3–4, 99–120.Google Scholar

  • Roda E., Pesquera A., Fontan F. & Keller P. 2004: Phosphate mineral association in the Cañada pegmatite (Salamance, Spain): paragenetic relatioships, chemical compositions, and implications for pegmatite evolution. Am. Mineral. 89, 110–125.CrossrefGoogle Scholar

  • Schoene B. & Bowring S.A. 2006: U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the Ar-40/Ar-39 standard MMhb. Contrib. Mineral. Petrol. 151, 5, 615–630.Google Scholar

  • Schoene B. & Bowring S.A. 2007: Determining accurate temperature-time paths from U-Pb thermochronology: An example from the Kaapval craton, southern Africa. Geochim. Cosmochim. Acta 71, 1, 165–185.CrossrefGoogle Scholar

  • Sheng Y.-M., Zheng Y.-F., Li S.-N. & Hu Z. 2013: Element mobility during continental collision: insights from polymineralic metamorphic vein within UHP eclogite in the Dabie orogen. J. Metam. Geol. 31, 221–241.CrossrefGoogle Scholar

  • Schmidt M.-W. & Poli S. 2003: Generation of mobile components during subduction of oceanic crust. Treatise on Geochemistry 3, 567–591.Google Scholar

  • Simmons Wm.B., Webber K.L. 2008: Pegmatite genesis: state of the art. Eur. J. Mineral. 20, 421–438.CrossrefGoogle Scholar

  • Stacey J.S. & Kramers J.D. 1975: Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet. Sci. Letters 26, 207–221.Google Scholar

  • Sun S.S. & McDonough W.F. 1989: Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins. Geol. Soc. Spec. Pub. 42, 313–345.CrossrefGoogle Scholar

  • Szopa K. 2009: The same reaction but different environment: breakdown of monazite in the High Tatra granites. Mineralogia — Special Papers 35, 113.Google Scholar

  • Szopa K., Gawęda A., Müller A. & Sikorska M. 2013: The petrogenesis of granitoid rocks unusually rich in apatite in the Western Tatra Mts. (S-Poland, Western Carpathians). Mineral. Petrol. 107, 609–627.Google Scholar

  • Thirwall M.F., Smith T.E., Graham A.M., Theodorou N., Hollings P., Davidson J.P. & Arculus R.J. 1994: High Field Strength Element Anomalies in Arc Lavas: Source or Process? J. Petrol. 35, 3, 819–838.CrossrefGoogle Scholar

  • Uher P., Ondrejka M. & Konečný P. 2009: Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-REE-Y oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Miner. Mag. 73, 6, 1009–1025.CrossrefGoogle Scholar

  • Wark D.A. & Watson E.B. 2006: TitaniQ: a titanium-in-quartz geothermometer. Contrib. Mineral. Petrol. 152, 743–754.CrossrefGoogle Scholar

About the article

Received: 2016-01-10

Accepted: 2016-09-22

Published Online: 2016-11-02

Published in Print: 2016-10-01

Citation Information: Geologica Carpathica, Volume 67, Issue 5, Pages 417–432, ISSN (Online) 1336-8052, DOI: https://doi.org/10.1515/geoca-2016-0026.

Export Citation

© 2016 Geologica Carpathica. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in