Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
Online
ISSN
2300-2581
See all formats and pricing
More options …

Analysis of some low- and high-dynamics errors of Low-Cost IMU

Krzysztof Vorbrich
  • Astrogeodynamical Observatory Space Research Centre, Polish Academy of Sciences Borowiec, 4 Drapałka St., 62-035 Kórnik, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-06-21 | DOI: https://doi.org/10.2478/v10277-012-0016-7

Analysis of some low- and high-dynamics errors of Low-Cost IMU

The paper expounds relevant results of some of the present author's experiments defining the strapdown IMU sensors’ errors and their propagation into and within DGPS/IMU. In order to deal with this problem, the author conducted both the laboratory and field-based experiments.

In the landborne laboratory the stand-alone Low-Cost IMU MotionPak MKII was verified in terms of the accelerometer bias, scale factor, gyroscope rotation parameters and internal temperature cross-correlations.

The waterborne field-trials based on board dedicated research ships at the lake and at the busy small sea harbour were augmented by the landborne ones. These experiments conducted during the small, average, and high dynamics of movement provided comparative sole-GPS, stand-alone DGPS and integrated DGPS/IMU solution error analysis in terms of the accuracy and the smoothness of the solution. This error estimation was also carried on in the context of the purposely-erroneous incipient DGPS/IMU initialisation and alignment and further in the circumstances of on-flight alignment improvement in the absence of the signal outages.

Moreover, the lake-waterborne tests conducted during extremely low dynamics of movement informed about the deterioration of the correctly initialised DGPS/IMU solution with reference to the stand-alone DGPS solution and sole-GPS solution.

The above-mentioned field experiments have checked positively the DGPS/MKI research integrating software prepared during the Polish/German European Union Research Project and modified during the subsequent Project supported by the Polish Committee for Scientific Research.

Analiza pewnych błędów "mało dokładnej" inercjalnej jednostki pomiarowej przy niskiej i wysokiej dynamice ruchu

Część zasadnicza pracy przedstawia pewne rezultaty doświadczeń przeprowadzanych w laboratorium Uniwersytetu w Singapore i wyznaczających błędy stosunkowo "mało-dokładnej" (ag. Low-Cost lub "Low-Grade") inercjalnej jednostki pomiarowej MotionPak™ typu MKII w modzie statycznym i dynamicznym. Ten ostatni był ograniczony do obrotów wokół osi poziomych układu współrzędnych wyznaczanych przez obudowę MKII. Współczynnik skali i stałe przesunięcie skalowane były wartością wektora przyspieszenia ziemskiego.

Testy polowe przeprowadzano na pokładzie statków badawczych na jeziorze i na morzu we Władysławowie oraz na lądzie na samochodzie. Praca prezentuje niektóre wyniki testów mobilnych (porównanie ciągłości rozwiązań GPS, DGPS, DGPS/MKI), m.in. przy dużej, średniej oraz bardzo małej (dryf statku) dynamice ruchu. Oprogramowanie umożliwiało pracę jednocześnie w modach o notacji: [D]GPS/MKI oraz [D]GPS/INS(MKI). Dla pierwszego z tych modów filtr Kalmana wykorzystywał surowe dane dla inercjalnych przyspieszeń i kątów Eulera. Dla drugiego z tych modów do filtra Kalmana wprowadzano inercjalne pseudoodległości i ich zmiany w czasie. Praca prezentuje rezultaty rozwiązania dla modu drugiego. Rozwiązanie ruchu dla GPS, DGPS, oraz [D]GPS/INS(MKI) służyło jako wzorzec dla badania ciągłości rozwiązania samo-stojącego MKI w czasie nieciągłości odbioru sygnału satelity lub telemetrii. Dodatkowo, testy wykonane na jeziorze przy prawie zerowej dynamice ruchu wykazały zmniejszenie dokładności rozwiązania [D]GPS/INS(MKI) w porównaniu do rozwiązania DGPS. Doświadczenia polowe miały m.in. na celu wykazanie prawidłowości działania oprogramowania integrującego wykonanego w ramach polsko-niemieckiego projektu Unii Europejskiej i zmodyfikowanego w czasie grantu finansowanego przez Komitet Badań Naukowych.

Keywords: IMU; INS; MEMS; [D]GPS/IMU; Kalman filter; waterborne & landborne tests

  • Abdel-Hamid W., Abdelazim T., El-Sheimy N., Lachapelle G., (2006): Improvement of MEMS-IMU/GPSperformance using fuzzy modelling, GPS Solutions, No 10, pp. 1-11.Google Scholar

  • Allameh S.M., (2003): An introduction to mechanical-properties-related issues in MEMS structures, Journal of Materials Science, No 38, pp. 4115-4123.Google Scholar

  • AAS (American Astronautical Society), (2005): Spaceflight mechanics, Proceedings of the AAS/AIAA: Spaceflight Mechanics Meeting, Univelt, pp. 343-344.Google Scholar

  • Bose S.C., (1996): Solid State Sensors, Lecture Notes on Integrated Navigation Systems (INS/GPS), Technalytics, Canoga Park, CA, USA, pp. 11-17.Google Scholar

  • Caccia M., Bibuli M., Bono R., Bruzzone G., (2008): Basic navigation, guidance and control of an Unmanned Surface Vehicle, Jour. Auton. Robot., Vol. 25, pp. 349-365.Google Scholar

  • Chatfield A.B., (1997): Fundamentals of High Accuracy Inertial Navigation: Progress in Astronautics and Aeronautics, American Institute of Astronautics and Aeronautics, 339 pp.Google Scholar

  • Dambeck J.H., (1995): Observability and controllability analysis for a strapdown inertial navigation system, in: K. Linkwitz, U. Hangleiter (Eds), High precision navigation 95, F.D. Ummler, Bonn, Germany, pp. 149-158.Google Scholar

  • Everett H.R., (1995): Sensors for mobile robots: theory and application, A.K. Peters; 528 pp.Google Scholar

  • Fontaine B., Termont D., Steinicke L., Pollefeys M., Vergauwen M., Moreas R., Xu F., Landzettel K., Steinmetz M., Brunner B., Michaelis H., Behnke T., Dequeker R., Degezelle P., Bertrand R., Visentin G., (2009): Autonomous Operations of a Micro-Rover for Geo-Science on Mars, PDF file published by NASA on www, Febr., 8 pp.Google Scholar

  • Grejner-Brzezinska D., (2005): On improving navigation accuracy of GPS/INS systems, Photogrammetric Engineering and Remote Sensing, Vol. 71, Issue 4, April 2005, pp. 377-389.Google Scholar

  • Hao Yan-ling, Chen Ming-hui, Li Liang-jun, Xu Bo, (2008): Comparison of robust H_filter and Kalman filter for initial alignment of inertial navigation system, J. Marine Science & Application, Vol. 7, No 2, pp. 116-121.Google Scholar

  • Huang Yun-Wen, Chiang Kai-Wei, (2008): An intelligent and autonomous MEMS IMU/GPS integration scheme for low cost land navigation applications, GPS Solutions, No 12, pp, 135-146.Google Scholar

  • Jekeli Ch., (2001): Inertial navigation systems with geodetic applications, Walter de Gruyter, Berlin, New York, 352 pp.Google Scholar

  • Kaygýsýz B.H., Erkmen A.M., Erkmen ÿI., (2007): Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network, Neural Processing Letters, No 25, pp. 171-186.Google Scholar

  • Kayton M., Fried W.R., (1997): Avionics Navigation Systems, Second Ed., Wiley-IEEE, 773 pp.Google Scholar

  • Kreye Ch., Hein G.W., Zimmermann B., (2005): Evaluation of Airborne Gravimetry Integrating GNSS and Strapdown INS Observations, Proc. IAG Symposia, Vol. 129, Geoid and Space Missions, Session 2, pp. 101-106.Google Scholar

  • Lawrence A., (1993): Modern Inertial Technology. Navigation, Guidance & Control, Springer-Verlag, NY, 235 pp.Google Scholar

  • Lobontiu N., Garcia E., (2005): Mechanics of Microelectromechanical Systems, Springer, New York, 406 pp.Google Scholar

  • Lee Mun Ki, Hong Sinpyo, Lee Man Hyung, Kwon Sun-Hong, Chun Ho-Hwan, (2005): Observability Analysis of Alignment Errors in GPS/INS, J. of Mechanical Science and Technology, Vol. 19, No 6, pp. 1253-1267.Google Scholar

  • Nguyen Ho Quoc Phuong, Kang Hee-Jun, Suh Young-Soo, Ro Young-Shick, (2009): INS/GPS Integration System with DCM Based Orientation Measurement, Lecture Notes in Computer Science, Vol. 5754, Emerging Intelligent Computing Technology and Applications, pp. 856-869.Google Scholar

  • Novara M., (2001): The BepiColombo Mercury surface element, Planetary and Space Science, Elsevier Science Ltd., No 49, pp. 1421-1435.Google Scholar

  • O'Brien B.B., Burns B.E., Geen J.A., (1995): Micromachined Accelerometer Gyroscope, US Patent No 5,392,650, 17 pp.Google Scholar

  • Park M., Gao Y., (2006): Error Analysis and Stochastic Modelling of Low-cost MEMS Accelerometer, Journal Intell. Robot. Syst., No 46, pp. 27-41.Google Scholar

  • Reze M., Hammond J., (2005): Low g Inertial Sensor Based on High Aspect Ratio MEMS, in: J. Valldorf, W. Gessner (Eds), Advanced Microsystems for Automotive Applications 2005, VDI-Buch, Springer-Verlag, Berlin, Heidelberg, New York, pp. 459-471.Google Scholar

  • Systron Donner Inertial, (2008): MotionPak II User's Guide. # 964015, Rev E, Systron Donner Inertial, Concord, CA, USA, 28 pp.Google Scholar

  • Teisseyre R., Minoru Takeo, Majewski E., (Eds), (2006): Earthquake source asymmetry, structural media and rotation effects, Springer, 582 pp.Google Scholar

  • Titterton D.H., Weston J.L., (2004): Strapdown Inertial Navigation Technology, IET, 558 pp.Google Scholar

  • Valldorf J., Gessner W., (2005): Advanced Microsystems for Automotive Applications, Springer, 543 pp.Google Scholar

  • Vorbrich K.K., (2001a): Contribution to Vehicular, Waterborne and Airborne Navigation by Means of the DGPS/(Low-Cost IMU) Integrated System, Artificial Satellites, Journal of Planetary Geodesy, 2000, Vol. 35, No 3, pp. 85-168.Google Scholar

  • Vorbrich K.K., (2001b): Contribution to Vehicular Navigation and Real-Time Positioning by Means of the DGPS/(Low-Cost IMU) Integrated System, Proc. of the 3rd International Conference on Information, Communications and Signal Processing (ICICS 2001), Singapore, 15 - 18 October 2001, pp. 5, paper nr. 0551.Google Scholar

  • Vorbrich K.K., (2002): Integrated Satellite Navigation System. Theory, Experiments, and Applications, Global Positioning Systems Centre, Nanyang Technological University, Singapore, 302 pp.Google Scholar

  • Vorbrich K.K., (2003): Error Propagation in the Integrated Global Navigation Satellite System GNSS/IMU, Proc. International Scientific/Technical Conference Engineering of the Sea-Going Traffic, Swinoujscie, Poland, 20 - 21 November 2003, Maritime Academy in Szczecin, Szczecin, Poland, pp. 261-273.Google Scholar

  • Wagner J.F., Wieneke T., (2003): Integrating satellite and inertial navigation — conventional and new fusion approaches, J. Control Engineering Practice, No 11, pp. 543-550.Google Scholar

  • Wang H.H., (1996): Experiments in intervention autonomous underwater vehicles, Stanford University, 2 Editions, OCLC # 37752534, 446 pp.Google Scholar

  • Woodman O.J., (1997): An Introduction to Inertial Navigation, Technical Report, No 696, UCAM-CL-TR-696, University of Cambridge Computer Laboratory, ISSN 1476-2986, 37 pp.Google Scholar

  • Zhao Y., (2003): Stiction and Anti-Stiction in MEMS and NEMS, Acta Mechanica Sinica (English Series), Vol. 19, No l, February, ISSN 0567-7718, pp. 1-10.Google Scholar

About the article


Published Online: 2012-06-21

Published in Print: 2011-01-01


Citation Information: Geodesy and Cartography, ISSN (Print) 2080-6736, DOI: https://doi.org/10.2478/v10277-012-0016-7.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in