Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
Online
ISSN
2300-2581
See all formats and pricing
More options …

Analysis of the horizontal structure of a measurement and control geodetic network based on entropy

Maria Mrówczyńska
  • Corresponding author
  • University of Zielona Gora Faculty of Land and Environment Engineering Institute of Building Engineering 1 Szafrana St., 65-516 Zielona Gora, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-02 | DOI: https://doi.org/10.2478/geocart-2013-0002

Abstract

The paper attempts to determine an optimum structure of a directional measurement and control network intended for investigating horizontal displacements. For this purpose it uses the notion of entropy as a logarithmical measure of probability of the state of a particular observation system. An optimum number of observations results from the difference of the entropy of the vector of parameters ΔH(x)corresponding to one extra observation. An increment of entropy interpreted as an increment of the amount of information about the state of the system determines the adoption or rejection of another extra observation to be carried out.

Streszczenie

W pracy podjęto próbę określenia optymalnej struktury sieci kierunkowej pomiarowo-kontrolnej przeznaczonej do badań przemieszczeń poziomych. W tym celu wykorzystano pojęcie entropii jako logarytmicznej miary prawdopodobieństwa stanu określonego układu obserwacyjnego. Optymalna liczba realizowanych obserwacji wynika z różnicy entropii wektora parametrów ΔH(x) odpowiadającej jednej obserwacji nadliczbowej. Przyrost entropii interpretowany jako przyrost objętości informacji na temat stanu układu decyduje o przyjęciu względnie odrzuceniu do realizacji kolejnej obserwacji nadliczbowej.

Keywords: entropy; amount of information; geodetic network

  • Bilgi, S., Ipbuker, Ucer D. & Muhammed S. (2008). Map entropy analysis of topographic data used in disaster information systems. Journal of Earthquake Engineering, 12, Supplement 2, 23-36. DOI: 10.1080/13632460802013438.CrossrefGoogle Scholar

  • Brillouin, L. (1969). La science et la théorie de l’information. Polish edition: Nauka a teoria informacji. Warszawa: PWN.Google Scholar

  • Gil, J. (1997). Analysis of horizontal geodetic network on the entrophy basis (in Polish). In III Scientific - Technical Conference on Problems of Automation in Engineering Surveying, 20-21 March 1997 (pp. 93-107). Warsaw, Poland: Polish Academy of Sciences.Google Scholar

  • Gil, J. (1999). The problem of the enthropy o fan observation system in the research of displacement. The 9th FIG International Symposium on Deformation Measurements, 27-30 September 1999 (pp. 256-266) Olsztyn, Poland: Warmia and Mazury University.Google Scholar

  • Lehmann, R. & Scheffler T. (2011). Monte Carlo-based data snooping with application to a geodetic network. Journal of Applied Geodesy, 5(3-4), 123-134. DOI: 10.1515/JAG.2011.014.CrossrefGoogle Scholar

  • Neuman, J. (1965). K analizu geodeziczeskich postrojenii. Izwestia wuzow. Moscow, Rusia: MIIZ.Google Scholar

  • Nowak, E. & Prószyński W. (1990). Analysis of horizontal engineering survey networks theory andworked examples (in Polish). User Guide SYPO. Warsaw, Poland: SYPO.Google Scholar

  • Nowak, E. (1993). RMS Technique. Geometrical and technical factors (in Polish). In III Scientific - Technical Conference on Problems of Automation in Engineering Surveying, 20-21 March 1997 (pp. 177-190). Warsaw, Poland: Polish Academy of Sciences.Google Scholar

  • Peng, J., Guo Ch., Hang H. & Shong S. (2006). An aggregate constrain method for inequality - constrained lest squares problems. Journal of Geodesy, 79, 705-713. DOI: 10.1007/s00190-006-0026-z.CrossrefGoogle Scholar

  • Philips, S.J., Anderson R.P. & Schapire R.E. (2006). Maximum entropy modeling of species geographic distribution. Ecological Modelling, 190 (2006), 231-259.Google Scholar

  • Schaffrin, B. & Cothren J. (2004). Hierarchical data fusion with photoframmetric applications. RevistaBrasileira de Cartografia, 55/02, 25-34.Google Scholar

  • Shannon, C.E. & Weaver W. (1949). The mathematical theory of communication, Urbana: University of Illinois Press.Google Scholar

  • Sharif, S., Yusoff N.S. & Djauharin M.A. (2012). Network Topology of Foreign Exchange Rate. ModernApplied Science, 6(11), 35-43. DOI:10.5539/mas.v6n11p35.CrossrefGoogle Scholar

  • Wang, H. (2010). An hierarchical information entropy model coverage estimation of coastal areas based on an adaptive Discrete Global Grid System. In Geoinformatics, 2010 18th International Conference, 18-20 June 2010 (pp.1-5). Beijing, China: IEEE Geoscience and Remote Sensing Society. DOI:10.109/GEOINFORMATICS.2010.5567822.Google Scholar

  • Wu, H., Zhu H. & Liu Y. (2004). A raster-based map information mearurment for QoS. InternationalArchives of Photogrammetry Remote Sensing and Spatial Information Sciences, 35(2), 365-370.Google Scholar

About the article

Published Online: 2013-07-02

Published in Print: 2013-06-01


Citation Information: Geodesy and Cartography, Volume 62, Issue 1, Pages 23–31, ISSN (Print) 2080-6736, DOI: https://doi.org/10.2478/geocart-2013-0002.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in