Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
See all formats and pricing
In This Section

Correction of spectral radiance of optical satellite image for mountainous terrain for studying land surface cover changes

Luong Chinh Ke
  • Corresponding author
  • Vietnam Society for Surveying Mapping and Remote Sensing 387 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Email:
/ Tran Ngoc Tuong
  • National Department of Remote Sensing 108 Chua Lang Str., Dong Da, Hanoi, Vietnam
  • Email:
/ Nguyen Van Hung
  • National Department of Remote Sensing 108 Chua Lang Str., Dong Da, Hanoi, Vietnam
Published Online: 2014-06-13 | DOI: https://doi.org/10.2478/geocart-2014-0003


Qualitative and quantitative results of high terrain elevation effect on spectral radiance of optical satellite image which affect the accuracy in retrieving of land surface cover changes is given. The paper includes two main parts: correction model of spectral radiance of satellite image affected by high terrain elevation and assessment of impacts and variation of land cover changes before and after correcting influence of high terrain elevation to the spectral radiance of the image. Study has been carried out with SPOT 5 in Hoa Binh mountain area of two periods: 2007 and 2010. Results showed that appropriate correction model is the Meyer’s one. The impacts of correction spectral radiance to 7 classes of classified images fluctuate from 15% to 400%. The varying changes before and after correction of image radiation fluctuate over 7 classes from 5% to 100%.


W artykule został przedstawiony wpływ różnicy wysokości terenu na spektralne właściwości optycznego obrazu satelitarnego, pod kątem badania zmian pokrycia terenu. Praca zawiera dwie główne części: korekcję radiometryczną obrazu satelitarnego na terenach wysokogórskich oraz ocenę skutków i zmienności pokrycia terenu przed i po korekcji wpływu wysokości terenu na odbicie spektralne obrazu. Badanie zostało przeprowadzone w obszarach górskich Hoa Binh na podstawie analizy obrazów SPOT5 z lat 2007 i 2010. Wyniki wykazały, że odpowiednim modelem korekcji dla badanego terenu jest model Meyer’a. Wpływ korekcji radiometrycznej wynik klasyfikacji pokrycia terenu (wydzielono 7 klas) waha się od 15% do 400%. Zmiany pokrycia terenu przed i po korekcji wpływu wysokości terenu na odbicie spektralne wahają się od 5% do 100%.

Keywords: image radiation correction; correction models; slope and terrain aspect; image classification


  • Civco, D. L. (1989). Topographic normalization of Landsat thematic mapper digital imagery. Photogrammetric Engineering & Remote Sensing, 55(11), 1303-1309.

  • Colby, J.D. (1991). Topographic normalization in rugged terrain. Photogrammetric Engineering & Remote Sensing, 57(5), 531-537.

  • Ekstrand, S. (1996). Landsat TM-Based Forest Damage Assessment: Correction for Topographic Effects. Photogrammetric Engineering & Remote Sensing, 62(2), 151-161.

  • Gu, D. & Gillespie A. (1998). Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun-Canopy-Sensor Geometry. Remote Sens. Environ., 64, 166-175. [Crossref]

  • Hale, S. R. & Rock B. N. (2003). Impact of topographic normalization on land-cover classifi cation accuracy. Photogrammetric Engineering & Remote Sensing, 69(7):785-791. [Crossref]

  • Kawata, Y., Ueno, S. & Kusaka T. (1988). Radiometric correction for atmospheric effects on Landsat MSS images. Int. J. Remote Sensing, 9(4), 729-748.

  • Lenot, X., Achard V. & Laurent P. (2009). SIERRA: A new approach to atmospheric and topographic correction for hyperspectral imagery. Remote Sensing of Environment, 113, 1664-1677.

  • Meyer, P., Itten K., Kellenberger T., Sandmeier S., & Sandmeier R. (1993). Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48,17-28. [Crossref]

  • Murakami, T. (2002). Minnaert constant of several forest types from SPOT/HRV data. J. Jap. Soc. Photogramm. Remote Sens., 41(1), 47-55 (in Japanese).

  • Nichol, J. & Hang L. K. (2008). The infl uence of DEM accuracy on topographic correction of Ikonos satellite images. Photogrammetric Engineering & Remote Sensing, 74(1), 47-53. [Crossref]

  • Proy, C., Tanre D. & Deschamps P. Y. (1989). Evaluation of Topographic Effects in Remotely Sensed Data. Remote Sensing of Environment, 30, 21-32. [Crossref]

  • Sandmeier, S. & Itten K. I. (1997). A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transactions in Geosciences and Remote Sensing, 35:708-717.

  • Smith, J. A., Lin T. L. & Ranson K. J. (1980). The Lambertian assumption and Landsat data. Photogrammetric Engineering & Remote Sensing, 46, 1183-1189.

  • Soenen, S. A., Peddle D. R. & Coburn. C. A. (2005). SCS+C: A modifi ed sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sensing, 43, 2148-2159. [Crossref]

  • Teillet, P. M. (1986). Image correction for radiometric effects in remote sensing. Int. J. Remote Sensing, 7(12), 1637-1651.

  • Teillet, P. M., Guindon B. & Goodenough D. G. (1982). On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8:1537-1540.

  • Wu, X., Furby S. L. & Wallace J. F. (2004). An Approach for Terrain Illumination Correction, The 12th Australasian Remote Sensing and Photogrammetry Conference Proceedings, Fremantle, Western Australia.

About the article

Received: 2013-01-25

Accepted: 2014-03-10

Published Online: 2014-06-13

Published in Print: 2014-06-01

Citation Information: Geodesy and Cartography, ISSN (Online) 2300-2581, ISSN (Print) 2080-6736, DOI: https://doi.org/10.2478/geocart-2014-0003. Export Citation

© by Luong Chinh Ke. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in