Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
See all formats and pricing
More options …

Correction of spectral radiance of optical satellite image for mountainous terrain for studying land surface cover changes

Luong Chinh Ke
  • Corresponding author
  • Vietnam Society for Surveying Mapping and Remote Sensing 387 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tran Ngoc Tuong / Nguyen Van Hung
Published Online: 2014-06-13 | DOI: https://doi.org/10.2478/geocart-2014-0003


Qualitative and quantitative results of high terrain elevation effect on spectral radiance of optical satellite image which affect the accuracy in retrieving of land surface cover changes is given. The paper includes two main parts: correction model of spectral radiance of satellite image affected by high terrain elevation and assessment of impacts and variation of land cover changes before and after correcting influence of high terrain elevation to the spectral radiance of the image. Study has been carried out with SPOT 5 in Hoa Binh mountain area of two periods: 2007 and 2010. Results showed that appropriate correction model is the Meyer’s one. The impacts of correction spectral radiance to 7 classes of classified images fluctuate from 15% to 400%. The varying changes before and after correction of image radiation fluctuate over 7 classes from 5% to 100%.


W artykule został przedstawiony wpływ różnicy wysokości terenu na spektralne właściwości optycznego obrazu satelitarnego, pod kątem badania zmian pokrycia terenu. Praca zawiera dwie główne części: korekcję radiometryczną obrazu satelitarnego na terenach wysokogórskich oraz ocenę skutków i zmienności pokrycia terenu przed i po korekcji wpływu wysokości terenu na odbicie spektralne obrazu. Badanie zostało przeprowadzone w obszarach górskich Hoa Binh na podstawie analizy obrazów SPOT5 z lat 2007 i 2010. Wyniki wykazały, że odpowiednim modelem korekcji dla badanego terenu jest model Meyer’a. Wpływ korekcji radiometrycznej wynik klasyfikacji pokrycia terenu (wydzielono 7 klas) waha się od 15% do 400%. Zmiany pokrycia terenu przed i po korekcji wpływu wysokości terenu na odbicie spektralne wahają się od 5% do 100%.

Keywords: image radiation correction; correction models; slope and terrain aspect; image classification


  • Civco, D. L. (1989). Topographic normalization of Landsat thematic mapper digital imagery. Photogrammetric Engineering & Remote Sensing, 55(11), 1303-1309.Google Scholar

  • Colby, J.D. (1991). Topographic normalization in rugged terrain. Photogrammetric Engineering & Remote Sensing, 57(5), 531-537.Google Scholar

  • Ekstrand, S. (1996). Landsat TM-Based Forest Damage Assessment: Correction for Topographic Effects. Photogrammetric Engineering & Remote Sensing, 62(2), 151-161.Google Scholar

  • Gu, D. & Gillespie A. (1998). Topographic Normalization of Landsat TM Images of Forest Based on Subpixel Sun-Canopy-Sensor Geometry. Remote Sens. Environ., 64, 166-175.CrossrefGoogle Scholar

  • Hale, S. R. & Rock B. N. (2003). Impact of topographic normalization on land-cover classifi cation accuracy. Photogrammetric Engineering & Remote Sensing, 69(7):785-791.CrossrefGoogle Scholar

  • Kawata, Y., Ueno, S. & Kusaka T. (1988). Radiometric correction for atmospheric effects on Landsat MSS images. Int. J. Remote Sensing, 9(4), 729-748.Google Scholar

  • Lenot, X., Achard V. & Laurent P. (2009). SIERRA: A new approach to atmospheric and topographic correction for hyperspectral imagery. Remote Sensing of Environment, 113, 1664-1677. Google Scholar

  • Meyer, P., Itten K., Kellenberger T., Sandmeier S., & Sandmeier R. (1993). Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS Journal of Photogrammetry and Remote Sensing, 48,17-28.CrossrefGoogle Scholar

  • Murakami, T. (2002). Minnaert constant of several forest types from SPOT/HRV data. J. Jap. Soc. Photogramm. Remote Sens., 41(1), 47-55 (in Japanese).Google Scholar

  • Nichol, J. & Hang L. K. (2008). The infl uence of DEM accuracy on topographic correction of Ikonos satellite images. Photogrammetric Engineering & Remote Sensing, 74(1), 47-53.CrossrefGoogle Scholar

  • Proy, C., Tanre D. & Deschamps P. Y. (1989). Evaluation of Topographic Effects in Remotely Sensed Data. Remote Sensing of Environment, 30, 21-32.CrossrefGoogle Scholar

  • Sandmeier, S. & Itten K. I. (1997). A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Transactions in Geosciences and Remote Sensing, 35:708-717.Google Scholar

  • Smith, J. A., Lin T. L. & Ranson K. J. (1980). The Lambertian assumption and Landsat data. Photogrammetric Engineering & Remote Sensing, 46, 1183-1189.Google Scholar

  • Soenen, S. A., Peddle D. R. & Coburn. C. A. (2005). SCS+C: A modifi ed sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sensing, 43, 2148-2159.CrossrefGoogle Scholar

  • Teillet, P. M. (1986). Image correction for radiometric effects in remote sensing. Int. J. Remote Sensing, 7(12), 1637-1651.Google Scholar

  • Teillet, P. M., Guindon B. & Goodenough D. G. (1982). On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing, 8:1537-1540.Google Scholar

  • Wu, X., Furby S. L. & Wallace J. F. (2004). An Approach for Terrain Illumination Correction, The 12th Australasian Remote Sensing and Photogrammetry Conference Proceedings, Fremantle, Western Australia. Google Scholar

About the article

Received: 2013-01-25

Accepted: 2014-03-10

Published Online: 2014-06-13

Published in Print: 2014-06-01

Citation Information: Geodesy and Cartography, Volume 63, Issue 1, Pages 39–53, ISSN (Online) 2300-2581, ISSN (Print) 2080-6736, DOI: https://doi.org/10.2478/geocart-2014-0003.

Export Citation

© by Luong Chinh Ke. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Uday Pimple, Asamaporn Sitthi, Dario Simonetti, Sukan Pungkul, Kumron Leadprathom, and Amnat Chidthaisong
Sustainability, 2017, Volume 9, Number 2, Page 258

Comments (0)

Please log in or register to comment.
Log in