Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
Online
ISSN
2300-2581
See all formats and pricing
In This Section

Planes coordinates transformation between PSAD56 to SIRGAS using a Multilayer Artificial Neural Network

Alfonso Tierra
  • Universidad de las Fuerzas Armadas-ESPE Grupo de Investigación GITE Av. Gral Rumiñahui s/n. Sangolquí, Ecuador. P.O.Box 171-5-31B
  • Email:
/ Ricardo Romero
  • Universidad de las Fuerzas Armadas-ESPE Grupo de Investigación GITE Av. Gral Rumiñahui s/n. Sangolquí, Ecuador. P.O.Box 171-5-31B
  • Email:
Published Online: 2014-12-17 | DOI: https://doi.org/10.2478/geocart-2014-0014

Abstract

Prior any satellite technology developments, the geodetic networks of a country were realized from a topocentric datum, and hence the respective cartography was performed. With availability of Global Navigation Satellite Systems-GNSS, cartography needs to be updated and referenced to a geocentric datum to be compatible with this technology. Cartography in Ecuador has been performed using the PSAD56 (Provisional South American Datum 1956) systems, nevertheless it’s necessary to have inside the system SIRGAS (SIstema de Referencia Geocéntrico para las AmericaS). This transformation between PSAD56 to SIRGAS use seven transformation parameters calculated with the method Helmert. These parameters, in case of Ecuador are compatible for scales of 1:25 000 or less, that does not satisfy the requirements on applications for major scales. In this study, the technique of neural networks is demonstrated as an alternative for improving the processing of UTM planes coordinates E, N (East, North) from PSAD56 to SIRGAS. Therefore, from the coordinates E, N, of the two systems, four transformation parameters were calculated (two of translation, one of rotation, and one scale difference) using the technique bidimensional transformation. Additionally, the same coordinates were used to training Multilayer Artificial Neural Network -MANN, in which the inputs are the coordinates E, N in PSAD56 and output are the coordinates E, N in SIRGAS. Both the two-dimensional transformation and ANN were used as control points to determine the differences between the mentioned methods. The results imply that, the coordinates transformation obtained with the artificial neural network multilayer trained have been improving the results that the bidimensional transformation, and compatible to scales 1:5000.

Streszczenie

Dostęp do nowoczesnych technologii, w tym GNSS umożliwiły dokładniejsze zdefi niowanie systemów odniesień przestrzennych wykorzystywanych m.in. w defi niowaniu krajowych układów odniesień i układów współrzędnych. W Ekwadorze wykorzystywany jest system PSAD56 (Provisional South American Datum 1956), ale w ostatnim czasie zaszła konieczność zdefi niowania wewnętrznego(krajowego) systemu SIRGAS (SIstema de Referencia Geocéntrico para las AmericaS). Do transformacji pomiędzy oboma systemami powszechnie wykorzystuje się metodę Helmerta, stosując układ siedmioparametrowy. Transformacja taka pozwala na zachowanie dokładności wystarczającej do opracowania map topografi cznych w skalach 1:25 000 lub mniejszych. W artykule do transformacji zastosowano sieci neuronowe, co umożliwiło podniesienie dokładności do skali 1:5 000

Keywords : PSAD56; SIRGAS; Bidimensional transformations; Artificial Neural Network

References

  • Abd-Elmotaal, H. (1994). Comparison of polynomial and similarity transformation based daum-shifts for Egypt. Bulletin Géodésique 68(3), 168-172Google Scholar

  • Cai, J & Grafarend, H. (2009). Systematical Analysis of the transformation between Krueger-Coordinate/ DHDN and UTM-Coordinate/ETRS89 in Baden-Wurttemberg with Difference Estimation Methods.Google Scholar

  • Geodetic Reference Frames: IAG Symposium, Munich, 134, 205-211, DOI: 10.1007/978-3-642-00860-3CrossrefGoogle Scholar

  • Haykin, S. (2001). Neural Network: A Comprehensive Foundation. Second Edition. Hamilton, Ontario, Canada.Google Scholar

  • Krasnopolsky, V. (2013). The Application of Neural Networks in the Earth System Sciences: Neural Networks Emulations for Complex Multidimensional Mappings. Springer, New York Seeber, G. (1993). Satellite Geodesy: Foundations Methods and Applications. W de Guyter. Berlin-New York Tierra, A. Dalazoana, R. & De Freitas, S. (2008). Using Artifi cial Neural Network To Improve The Transformation of Coordinates Between Classical Geodetic Reference Frames. Computers & Geosciences, p. 181-189, DOI:10.1016, Netherlands.Google Scholar

  • Tierra, A., De Freitas, S. & Guevara, P. (2009). Using Artifi cial Neural Network to Transformation of Coordinates from PSAD56 to SIRGAS95. International Association of Geodesy Symposia: Geodetic Reference Frames. Springer-Verlag, Berlin-Germany, Vol 134, p. 173-178, DOI: 10.1007/978-3-642-00860-3CrossrefGoogle Scholar

  • He, X & Xu, Sh. (2009). Process Neural Networks: Theory Applications. Springer-Verlag, Berlin Heidelberg.Google Scholar

  • Yilmaz, E. & Akhmet, M. (2014). Neural Networks with Discontinuous: Impact Activations. Springer, Neww York.Google Scholar

  • You R & Hwang, H. (2006). Coordinate Transformation between Two Geodetic Datums of Taiwan by Least-Squares Collocation. J. Surv. Eng., 132(2), 64-70.Google Scholar

About the article

Received: 2014-04-15

Accepted: 2014-09-10

Published Online: 2014-12-17

Published in Print: 2014-12-01


Citation Information: Geodesy and Cartography, ISSN (Online) 2300-2581, ISSN (Print) 2080-6736, DOI: https://doi.org/10.2478/geocart-2014-0014.

Export Citation

© by Alfonso Tierra. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in