Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
Online
ISSN
2300-2581
See all formats and pricing
More options …

Low aerial imagery – an assessment of georeferencing errors and the potential for use in environmental inventory

Maciej Smaczyński
  • Corresponding author
  • Adam Mickiewicz University in Poznań, Department of Cartography and Geomatics, 10 Bogumiła Krygowskiego St., 61-680 Poznań
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Medyńska-Gulij
  • Adam Mickiewicz University in Poznań, Department of Cartography and Geomatics, 10 Bogumiła Krygowskiego St., 61-680 Poznań
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-26 | DOI: https://doi.org/10.1515/geocart-2017-0005

Abstract

Unmanned aerial vehicles are increasingly being used in close range photogrammetry. Real-time observation of the Earth’s surface and the photogrammetric images obtained are used as material for surveying and environmental inventory. The following study was conducted on a small area (approximately 1 ha). In such cases, the classical method of topographic mapping is not accurate enough. The geodetic method of topographic surveying, on the other hand, is an overly precise measurement technique for the purpose of inventorying the natural environment components. The author of the following study has proposed using the unmanned aerial vehicle technology and tying in the obtained images to the control point network established with the aid of GNSS technology. Georeferencing the acquired images and using them to create a photogrammetric model of the studied area enabled the researcher to perform calculations, which yielded a total root mean square error below 9 cm. The performed comparison of the real lengths of the vectors connecting the control points and their lengths calculated on the basis of the photogrammetric model made it possible to fully confirm the RMSE calculated and prove the usefulness of the UAV technology in observing terrain components for the purpose of environmental inventory. Such environmental components include, among others, elements of road infrastructure, green areas, but also changes in the location of moving pedestrians and vehicles, as well as other changes in the natural environment that are not registered on classical base maps or topographic maps.

Keywords: UAV; GNSS; GCP; geodetic control network; environmental inventory

References

  • Ahmad, A. (2011). Digital Mapping Using Low Altitude UAV. Pertanika Journal of Science and Technology 19(S), 51–58.Google Scholar

  • Ahmad, A. and Samad, A. (2010). Aerial Mapping using High Resolution Digital Camera and Unmanned Aerial Vehicle for Geographical Information System. 6th International Colloquium on Signal Processing & its Applications, DOI: 10.1109/CSPA.2010.5545303CrossrefGoogle Scholar

  • Anai, T., Sasaki, T., Osaragi, K., Yamada, M., Otomo F., and Otani, H. (2012). Automatic Exterior Orientation Procedure for Low-Cost Uav Photogrammetry Using Video Image Tracking Technique and Gps Information. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7(September), 469–474. DOI: 10.5194/isprsarchives-XXXIX-B7-469-2012, 2012Google Scholar

  • Barazzetti, L., Remondino, F., Scaioni, M. and Brumana, R. (2010). Fully automatic UAV image-based sensor orientation. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences Vol XXXVIII Part 5 Commission V Symposium, 6.Google Scholar

  • Bielecka, E. and Medyńska-Gulij B. (2015). Zur Geodateninfrastruktur in Polen. Geodata Infrastructure in Poland, Kartographische Nachrichten, 65/4:201–208Google Scholar

  • De Kock, M. and Gallacher, D. (2016). From drone data to decision: Turning images into ecological answers. Conference paper: Innovation Arabia 9, At Dubai, UAE. DOI: 10.13140/RG.2.1.3587.8169Google Scholar

  • Eugster, H. and Nebiker, S. (2008). Uav-Based Augmented Monitoring – Real-Time Georeferencing and Integration of Video Imagery With Virtual Globes. Archives, 37, 1229–1236.Google Scholar

  • Gallacher, D. (2015). Ecological Monitoring of Arid Rangelands using Micro-UAVs (drones) Conference paper: Sixth Health and Environment Conference, HBMsU Congress, At Dubai, UAE. DOI: 10.13140/RG.2.1.3107.4002Google Scholar

  • Geodetic and Cartographic Law, (1989). Dz.U. No 30 Item 163Google Scholar

  • Gonçalves, J. A. and Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 101–111. DOI: http://doi.org/10.1016/j.isprsjprs.2015.02.009Crossref

  • Halik, Ł., Lorek, D., and Medyńska-Gulij, B. (2015). Kartowanie terenowe w technologii GPS-GIS. Badania fizjograficzne, 95–103. http://doi.org/10.14746/bfg.2015.6.7

  • Halik, Ł. and Medyńska-Gulij, B. (2016). The differentiation of point symbols using selected visual variables in the mobile augmented reality system, The Cartographic Journal, DOI: 10.1080/00087041.2016.1253144CrossrefGoogle Scholar

  • Kędzierski, M., Fryśkowska, A. and Wierzbicki, D. (2014). Opracowania fotogrametryczne z niskiego pułapu, Wojskowa Akademia Techniczna, Warszawa.Google Scholar

  • Kršák, B., Blišťan, P., Pauliková, A., Puškárová, P., Kovanič, Ľ., Palková, J., and Zelizňaková, V. (2016). Use of low-cost UAV photogrammetry to analyse the accuracy of a digital elevation model in a case study. Measurement, 91, 276–287. http://doi.org/10.1016/j.measurement.2016.05.028Crossref

  • Kurczyński Z. (2014). Fotogrametria, Wyd. Nauk. PWN, Warszawa.Google Scholar

  • Medyńska-Gulij B. (2015). Kartografia. Zasady i zastosowania geowizualizacji, PWN, Warszawa.Google Scholar

  • Minister of Internal Affairs and Administration, (2011a). Technical standards of carrying out topographic surveys, processing the results of those surveys, and registering them in the National Geodetic and Cartographic Resource. Dz.U. No 63, Item 1572.Google Scholar

  • Minister of Internal Affairs and Administration, (2011b). Regulation on databases concerning aerial and satellite images as well as the orthophotomap and the numerical terrain model. Dz.U. No 263 Ithem 1571.Google Scholar

  • Nex, F., and Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. http://doi.org/10.1007/s12518-013-0120-xCrossref

  • Pérez, M., Agüera, F. and Carvajal, F. (2013). Low Cost Surveying Using an Unmanned Aerial Vehicle. International Archives of Photogrammetry and Remote Sensing, XL(September), 4–6, DOI: 10.5194/isprsarchives-XL-1-W2-311-2013CrossrefGoogle Scholar

  • Richling A. (2007). Podstawowe założenia badań fizycznogeograficznych. [W:] Geograficzne badania środowiska przyrodniczego, 2007, red. A. Richling, PWN Warszawa.Google Scholar

  • Ruzgienė, B., Berteška, T., Gečyte, S., Jakubauskienė, E. and Aksamitauskas, V. Č. (2015). The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619–627. http://doi.org/10.1016/j.measurement.2015.04.018Crossref

  • Ryczywolski, M., Oruba, A. and Leo, M. (2008). The precise satellite positioning ASG-EUPOS. International Conference GEOS 2008 Proceedings, Prague.Google Scholar

  • Sanecki J., Stępień G., Konieczny J., Niebylski J. and Klewski A. (2016). Teledetekcja. Wykorzystanie zdalnej informacji. Szczecin. Wydawnictwo Naukowe Akademii Morskiej.Google Scholar

  • Stępień G., Sanecki, J., Klewski A. and Beczkowski, K. (2016) Wyznaczanie granic użytków rolnych z wykorzystaniem bezzałogowych systemów latających, Infrastruktura i Ekologia Terenów Wiejskich, 2: 1011-1024. DOI: 10.14597/infraeco.2016.3.2.074Google Scholar

  • Siebert, S. and Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Automation in Construction, 41, 1–14. http://doi.org/10.1016/j.autcon.2014.01.004Crossref

  • Smaczyński, M. (2015). Wizualizacja dynamiki zmian liczby uczestników imprezy masowej z wykorzystaniem dronów, Badania fizjograficzne, 159–171. http://doi.org/10.14746/bfg.2015.6.12

  • Toutin, T. and Chénier, R. (2004). GCP requirement for high-resolution satellite mapping. XXth ISPRS Congress, 12–23.Google Scholar

  • Uysal, M., Toprak, A. S. and Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement: Journal of the International Measurement Confederation, 73, 539–543. http://doi.org/10.1016/j.measurement.2015.06.010Crossref

  • Wang, J., Garratt, M., Lambert, A., Wang, J. J., Han, S. and Sinclair, D. (2008). Integration of Gps/Ins/Vision Sensors To Navigate Unmanned Aerial Vehicles. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1, 963–970Google Scholar

  • Wielebski, Ł. and Medyńska-Gulij, B. (2013), Cartographic visualization of fire hydrants accessibility for the purpose of decision making, Geodesy and Cartography. Volume 62:183-198, DOI: 10.2478/geocart-2013-0011CrossrefGoogle Scholar

  • Zhang, C. and Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. http://doi.org/10.1007/s11119-012-9274-5Crossref

About the article

Received: 2017-01-30

Accepted: 2017-04-19

Published Online: 2017-06-26

Published in Print: 2017-06-01


Citation Information: Geodesy and Cartography, Volume 66, Issue 1, Pages 89–104, ISSN (Online) 2300-2581, ISSN (Print) 2080-6736, DOI: https://doi.org/10.1515/geocart-2017-0005.

Export Citation

© 2017 Maciej Smaczyński et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in