Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

2 Issues per year

Open Access
Online
ISSN
2300-2581
See all formats and pricing
More options …

Geovisualisation as a process of creating complementary visualisations: static two-dimensional, surface three-dimensional, and interactive

Tymoteusz Horbiński
  • Corresponding author
  • Institute of Physical Geography and Environmental Planning, Department of Cartography and Geomatics, Adam Mickiewicz University in Poznan, 10 Krygowskiego St., 61-680 Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Medyńska-Gulij
  • Institute of Physical Geography and Environmental Planning, Department of Cartography and Geomatics, Adam Mickiewicz University in Poznan, 10 Krygowskiego St., 61-680 Poznan, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-26 | DOI: https://doi.org/10.1515/geocart-2017-0009

Abstract

In the following paper, geovisualisation will be applied to one spatial phenomenon and understood as a process of creating complementary visualisations: static two-dimensional, surface three-dimensional, and interactive. The central challenge that the researchers faced was to find a method of presenting the phenomenon in a multi-faceted way. The main objective of the four-stage study was to show the capacity of the contemporary software for presenting geographical space from various perspectives while maintaining the standards of cartographic presentation and making sure that the form remains attractive for the user. The correctness, effectiveness, and usefulness of the proposed approach was analysed on the basis of a geovisualisation of natural aggregate extraction in the Gniezno district in the years 2005–2015. For each of the three visualisations, the researchers planned a different range of information, different forms of graphic and cartographic presentation, different use and function, but as far as possible the same accessible databases and the same free technologies. On the basis of the final publication, the researchers pointed out the advantages of the proposed workflow and the correctness of the detailed flowchart.

Keywords: geovizualisation; complementary visualisations; static two-dimensional map; interactive map; surface three-dimensional model; natural aggregate extraction

References

  • Bielecka, E. and Medyńska-Gulij, B. (2015). Zur Geodateninfrastruktur in Polen. Geodata Infrastructure in Poland, Kartographische Nachrichten. Volume 65/4:201–208.Google Scholar

  • Bielecka, E. Leszczynska, M. and Hall, P. (2014). User perspective on geospatial data quality. Case study of the Polish Topographic Database. The 9th International Conference “ENVIRONMENTAL ENGINEERING” 22–23 May 2014, Vilnius, Lithuania, selected papers, eISSN 2029-7092 / eISBN 978-609-457-640-9. Available online at http://enviro.vgtu.lt, DOI: http://dx.doi.org/10.3846/enviro.2014.193.Crossref

  • Calka, B. and Cahan, B. (2016). Interactive map of refugee movement in Europe, Geodesy and Cartography. Volume 65/2:139–148, DOI: https://doi.org/10.1515/geocart-2016-0010.Crossref

  • Cybulski, P. (2016). Design rules and practices for animated maps online, Journal of Spatial Science. Volume 61/2:461–471. DOI: http://dx.doi.org/10.1080/14498596.2016.1147394.Crossref

  • Duckett, J. (2014). JavaScript i JQuery interactive front-end web development, Helion.Google Scholar

  • Gahegan, M. (2005). Beyond tools: visual support for the entire process of GIScience, Exploring Geovisualization, Elsevier Science, 83–99, Amsterdam.Google Scholar

  • Halik, Ł. (2014). Zmienne graficzne sygnatur punktowych w mobilnym systemie rozszerzonej rzeczywistości. UAM, Poznań.Google Scholar

  • Halik, Ł. Lorek, D. and Medyńska-Gulij, B. (2015). Kartowanie terenowe w technologii GPS-GIS, Badania Fizjograficzne Seria A – Geografia Fizyczna. Volume V /A66:67–74. DOI: 10.14746/bfg.2015.6.7.Google Scholar

  • Halik, Ł. and Medyńska-Gulij, B. (2016). The differentiation of point symbols using selected visual variables in the mobile augmented reality system, The Cartographic Journal. DOI: 10.1080/00087041.2016.1253144.CrossrefGoogle Scholar

  • Horbiński, T. (2016). Dokumentacja kartograficzna zmian wydobycia kruszywa naturalnego w powiecie gnieźnieńskim w latach 2005–2015, Badania Fizjograficzne Seria A – Geografia Fizyczna. DOI: 10.14746/bfg.2016.7.4.Google Scholar

  • Lorek, D. (2016). Multimedia integration of cartographic source materials for researching and presenting phenomena from economic history, Geodesy and Cartography. Volume 65/2:271–281. DOI: 10.1515/geocart-2016-0015.CrossrefGoogle Scholar

  • MacEachren, A.M. (1994). Visualization in modern cartography: Setting the agenda [w:] Vizualization in Modern Cartography, MacEachren A.M., Taylor D.R. (red.), Oxford.Google Scholar

  • Macioch, A. and Malmon, G. (2010). Funkcje interaktywne współczesnych map elektronicznych. Polski Przegląd Kartograficzny. Volume 44/4:331-353.Google Scholar

  • Maiellaro, N. and Varasano, A. (2017). One-Page Multimedia Interactive Map, International Journal of Geo-Information. DOI: 10.3390/ijgi6020034.CrossrefGoogle Scholar

  • Medyńska-Gulij, B. Dickmann, F. Halik, Ł. and Wielebski, Ł. (2015). Mehrperspektivische Visualisierung von Informationen zum räumlichen Freizeitverhalten. Ein Smartphone-gestützter Ansatz zur Kartographie von Tourismusrouten. Multiperspective visualisation of spatial spare time activities. A smartphone-based approach to mapping tourist routes, Kartographische Nachrichten. Volume 67/6:323–329.Google Scholar

  • Medyńska-Gulij, B. and Cybulski, P. (2016). Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table, Geodesy and Cartography. Volume 65:67–80. DOI: 10.1515/geocart-2016-0002.CrossrefGoogle Scholar

  • Medyńska-Gulij, B. (2015). Kartografia. Zasady i zastosowania geowizualizacji, PWN Warszawa.Google Scholar

  • Prechtel, N. (2015). On strategies and automation in upgrading 2D to 3D landscape representations, Cartography and Geographic Information Science. 45:244–258. DOI: http://dx.doi.org/10.1080/15230406.2014.987696.Crossref

  • Smaczyński, M. (2015). Wizualizacja dynamiki zmian liczby uczestników imprezy masowej z wykorzystaniem dronów, Badania Fizjograficzne Seria A – Geografia Fizyczna. Volume VI/A66:157–172. DOI: 10.14746/bfg.2015.6.12.Google Scholar

  • Slocum, T.A. McMaster, R.B. Kessler, F.C. and Howard, H.H. (2009). Thematic Cartography and Geovisualization, 3rd ed., Pearson Prentice Hall, Upper Saddle River.Google Scholar

  • Wielebski, Ł. (2014). Mapping techniques of spatio-temporal relationships for a centric road network model, Kartographische Nachrichten. Volume 64/5:269–276.Google Scholar

  • Żyszkowska, W. (2000). Semiotyczne aspekty wizualizacji kartograficznej, Wydawnictwo Uniwersytetu Wrocławskiego.Google Scholar

About the article

Received: 2017-02-09

Accepted: 2017-05-12

Published Online: 2017-06-26

Published in Print: 2017-06-01


Citation Information: Geodesy and Cartography, Volume 66, Issue 1, Pages 45–58, ISSN (Online) 2300-2581, ISSN (Print) 2080-6736, DOI: https://doi.org/10.1515/geocart-2017-0009.

Export Citation

© 2017 Tymoteusz Horbiński et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in