Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geochronometria

1 Issue per year


IMPACT FACTOR 2016: 1.426

CiteScore 2016: 1.42

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1897-1695
See all formats and pricing
More options …
Just Accepted

Issues

Dendrochronological Records of Debris Flow and Avalanche Activity in a Mid-Mountain Forest Zone (Eastern Sudetes — Central Europe)

Ireneusz Malik / Piotr Owczarek
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-06 | DOI: https://doi.org/10.2478/v10003-009-0011-7

Dendrochronological Records of Debris Flow and Avalanche Activity in a Mid-Mountain Forest Zone (Eastern Sudetes — Central Europe)

Dendrochronological methods were used to determine the frequency of debris flow/avalanche events in a forest zone. A debris flow and avalanche track located in the Eastern Sudetes Mountains (Central Europe) was analysed. The length of the youngest debris flow/avalanche track is about 750 m. Three distinct sections of the debris flow can be identified along the longitudinal section: niche, gully and tongue. The dendrochronological study shows that trees started growing on the margins of the debris flow between 1908 and 1963. Hence, debris flow and/or avalanche events occurred on this slope at the turn of the 19th and 20th centuries. All trees collected from the tongue started growing between 1935 and 1964. However, a large debris flow event took place several years before, most probably during an extraordinary rainfall in June 1921. Following this event, several relatively large debris flows have occurred during the growing season, the strongest dendrochronologically confirmed events occurring in 1968, 1971-1972, 1991, 1997 and probably in 1977. Spring debris flow events induced by snow melt and/or avalanches have occurred in 1994 and 2004. The results suggest that with favourable geological conditions, debris flows can occur very frequently within entirely forested slopes.

Keywords: debris flow; avalanche; dendrochronology; mid-mountains

  • Abe K and Iwamoto K, 1986. An evaluation of tree-root effect on slope stability by tree-root strength. Journal Japanese Forest Society 68: 505-510.Google Scholar

  • Bardou E and Delaloye R, 2004. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments. Natural Hazards and Earth System Sciences 4: 519-530.CrossrefGoogle Scholar

  • Baumann F and Kaiser KF, 1999. The Multetta Debris Fan, Eastern Swiss Alps: A 500-year Debris Flow Chronology. Arctic, Antarctic and Alpine Research 31: 128-134.Google Scholar

  • Butler DR, 2001. Geomorphic process-disturbance corridors: a variation on a principle of landscape ecology. Progress in Physical Geography 25: 237-238, DOI 10.1177/030913330102500204.CrossrefGoogle Scholar

  • Caine N, 1980. The rainfall intensity — duration control of shallow landslides and debris flows. Geographical Analysis 22A: 23-27.Google Scholar

  • Carrara PE, 1979. The determination of snow avalanche frequency through tree-ring analysis and historical records at Ophir, Colorado. Geological Society of America Bulletin 90: 773-780.CrossrefGoogle Scholar

  • Casteller A, Christen M, Villalba R, Martinez H, Stöckli V, Leiva JC, Bartelt P, 2008. Validating numerical simulations avalanches using dendrochronology: the Cerro Venata event in Northern Patagonia, Argentina. Natural Hazards and Earth System Sciences 8: 433-443.CrossrefWeb of ScienceGoogle Scholar

  • Decaulne A, Sæmundsson B and Petursson A, 2005. Debris flow triggered by rapid snowmelt: a case study in the Gleidarhjallli area, northwestern Iceland. Geographical Analysis A 87A: 487-500.Google Scholar

  • Dunajski A, 1998. Sukcesja roślinności na lawinisku potoku błotnokamienistego w dolinie Łomniczki w Karkonoszach — stan zaawansowania procesu po trzech latach (Vegetation succession on muddy debris flow in the Łomniczka Valley in the Karkonosze Mountains — the progress after three years). Acta Universitatis Wratislaviensis 2090, Prace Botaniczne 77: 205-217 (in Polish).Google Scholar

  • Fiorillo F and Wilson RC, 2004. Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Engineering Geology 75: 263-289.CrossrefGoogle Scholar

  • Gába Z, 1992. Mury pod Keprnikiem v červenci 1991 (Debris flows in the Keprnik massif, June 1991). Severní Morava 64: 43-50 (in Czech).Google Scholar

  • Gärtner H, Stoffel M, Lièvre I, Conus D, Grichting M and Monbaron M, 2003. Debris-flow frequency derived from tree-ring analyses and geomorphic mapping, Valais, Switzerland. Debris Flow Hazards Mitigation: Mechanics, Prediction and Assessment 1: 201-207.Google Scholar

  • Huber B, 1943. Über die Sicherheit jahrringchronologischer Datierung. Holz als Roh — und Werkstoff 6: 263-268.CrossrefGoogle Scholar

  • Ishikawa Y, Kawakami S, Morimoto Ch and Mizuhara K, 2003. Suppression of Derbis movement by forests and damage to forests by debris deposition. Journal of Forest Research 8: 37-47.CrossrefGoogle Scholar

  • Kotarba A, 1992. High-energy geomorphic events in the polish Tatra Mountains. Geographical Analysis 74A: 121-131.Google Scholar

  • Lancaster S and Hayes S, 2003. Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research 39: 1-21.Google Scholar

  • Lin C, Shie C, Yuan B, Shieh Y and Lee S, 2003. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan, Engineering Geology 71: 49-61.Google Scholar

  • Malik I, 2006. Contribution to understanding the historical evolution of meandering rivers using dendrochronological methods: example of the Mała Panew River in southern Poland. Earth Surface Processes and Landforms 31: 1227-1245.CrossrefGoogle Scholar

  • Malik I and Owczarek P, 2007. Dendrochronological records of erosion and sedimentation In a mid-mountain stream (Jeseniki Mountains — Czech Republic). TRACE — Tree Rings in Archaeology, Climatology and Ecology 5: 240-247.Google Scholar

  • May ChL, 2002. Debris flow through different forest age classes in the Central Oregon Coast Range. Journal of the American Water Resources Association 38: 1097-1113.CrossrefGoogle Scholar

  • Perret S, Stoffel M and Kienholz H, 2006. Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps — a dendrogeomorphological case study. Geomorphology 74: 219-231, DOI 10.1016/j.geomorph.2005.08.009.CrossrefGoogle Scholar

  • Polách D and Gába Z, 1998. Historie povodní na šumperském a jesenickém okrese (Historic foods in Šumperk and Jesenik districts). Severní Morava 75: 3-28 (in Czech).Google Scholar

  • Reid ME, Nielsen HP and Dreiss SJ, 1988. Hydrologic factors triggering a shallow hillslope failure. Bulletin of the International Association of Engineering Geology 25: 349-361.Google Scholar

  • Schweingruber FH, 1996. Tree rings and environment. Berne. Paul Haupt Verlag: 609pp.Google Scholar

  • Stoffel MI, Conus D, Grichting M, Raetzo H, Gärtner H and Monbaron M, 2005. 400 Years of Debris-Flow Activity and Triggering Weather Conditions: Ritigraben, Valais, Switzerland. Antarctic and Alpine Research 37: 387-395, DOI 10.1657/1523-0430(2005)037[0387:YODAAT]2.0.CO;2.CrossrefGoogle Scholar

  • Šăfar J, 2003. Olomoucko. Agentura ochrany přirody a krajiny ČR a EkoCentrum Brno, Praha (Olomouc Region. Agentura ochrany přirody a krajiny ČR a EkoCentrum Brno, Praha): 380pp (in Czech).Google Scholar

  • Štekl J, Brázdil R, Kakos V, Jež J and Tolasz R, 2001. Extrémní denní srážkové úhrny na území ČR v období 1879-2000 a jejich synoptické příčiny (Extreme daily precipitation in the Czech Republic area and their synoptic causes (in the period 1879-2000)). Český hydrometeorologický ústav, Praha: 286pp (in Czech).Google Scholar

  • Zieliński T, 2003. Catastrophic flood effects in alpine/foothill fluvial system (a case study from the Sudetes Mts, SW Poland). Geomorphology 54: 293-306, DOI 10.1016/S0169-555X(02)00362-8.CrossrefGoogle Scholar

About the article


Published Online: 2010-01-06

Published in Print: 2009-01-01


Citation Information: Geochronometria, ISSN (Online) 1897-1695, ISSN (Print) 1733-8387, DOI: https://doi.org/10.2478/v10003-009-0011-7.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Ireneusz Malik, Małgorzata Wistuba, Yongbo Tie, Piotr Owczarek, Beata Woskowicz-Ślęzak, and Katarzyna Łuszczyńska
Applied Geography, 2017, Volume 87, Page 54
[4]
N. Bätz, P. Colombini, P. Cherubini, and S. N. Lane
Journal of Geophysical Research: Earth Surface, 2016, Volume 121, Number 10, Page 1763
[7]
Małgorzata Wistuba, Ireneusz Malik, Krzysztof Wójcicki, and Patrycja Michałowicz
Earth Surface Processes and Landforms, 2015, Volume 40, Number 3, Page 293
[9]
Piotr Migoń, Andrzej Kacprzak, Ireneusz Malik, Marek Kasprzak, Piotr Owczarek, Małgorzata Wistuba, and Tomaš Pánek
Geomorphology, 2014, Volume 219, Page 213
[12]
Ireneusz Malik, Yongbo Tie, Piotr Owczarek, Małgorzata Wistuba, Wojciech Pilorz, and Beata Woskowicz-Ślęzak
Geochronometria, 2013, Volume 40, Number 3
[13]
Markus Stoffel, David R. Butler, and Christophe Corona
Geomorphology, 2013, Volume 200, Page 106
[14]
Jan Tumajer and Václav Treml
Geochronometria, 2013, Volume 40, Number 1
[15]
J.A. Ballesteros-Cánovas, J.M. Bodoque, A. Lucía, J.F. Martín-Duque, A. Díez-Herrero, V. Ruiz-Villanueva, J.M. Rubiales, and M. Genova
CATENA, 2013, Volume 106, Page 113
[18]
Piotr Migoń, Tomáš Pánek, Ireneusz Malik, Jan Hrádecký, Piotr Owczarek, and Karel Šilhán
Geomorphology, 2010, Volume 124, Number 3-4, Page 200

Comments (0)

Please log in or register to comment.
Log in