Jump to ContentJump to Main Navigation
Show Summary Details

Geochronometria

1 Issue per year


IMPACT FACTOR increased in 2015: 2.038
Rank 12 out of 54 in category Paleontology and 70 out of 184 in Geosciences, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 1.027
Source Normalized Impact per Paper (SNIP) 2015: 0.880
Impact per Publication (IPP) 2015: 1.600

Open Access
Online
ISSN
1897-1695
See all formats and pricing



Select Volume and Issue

Issues

On the applicability of post-IR IRSL dating to Japanese loess

Christine Thiel
  • Leibniz Institute for Applied Geophysics, S3: Geochronology and Isotope Hydrology, Stilleweg 2, 30655, Hannover, Germany
  • Nordic Laboratory for Luminescence Dating, Department of Earth Sciences, Aarhus University, Risø DTU, DK 4000, Roskilde, Denmark
  • :
/ Jan-Pieter Buylaert
  • Nordic Laboratory for Luminescence Dating, Department of Earth Sciences, Aarhus University, Risø DTU, DK 4000, Roskilde, Denmark
  • Radiation Research Division, National Laboratory for Sustainable Energy, Risø DTU, DK 4000, Roskilde, Denmark
  • :
/ Andrew Murray
  • Nordic Laboratory for Luminescence Dating, Department of Earth Sciences, Aarhus University, Risø DTU, DK 4000, Roskilde, Denmark
  • :
/ Sumiko Tsukamoto
  • Leibniz Institute for Applied Geophysics, S3: Geochronology and Isotope Hydrology, Stilleweg 2, 30655, Hannover, Germany
  • :
Published Online: 2011-09-22 | DOI: https://doi.org/10.2478/s13386-011-0043-4

Abstract

Recent work on infrared stimulated luminescence (IRSL) dating has focussed on finding and testing signals which show less or negligible fading. IRSL signals measured at elevated temperature following IR stimulation at 50°C (post-IR IRSL) have been shown to be much more stable than the low temperature IRSL signal and seem to have considerable potential for dating. For Early Pleistocene samples of both European and Chinese loess natural post-IR IRSL signals lying in the saturation region of the laboratory dose response curve have been observed; this suggests that there is no significant fading in nature. As a contribution to the further testing of post-IR IRSL dating, we have used 18 samples from two Japanese loess profiles for which quartz OSL and tephra ages up to 600 ka provide age control. After a preheat of 320°C (60 s), the polymineral fine grains (4–11 μm) were bleached with IR at 50°C (200 s) and the IRSL was subsequently measured at 290°C for 200 s. In general, the fading uncorrected post-IR IRSL ages agree with both the quartz OSL and the tephra ages. We conclude that the post-IR IRSL signal from these samples does not fade significantly and allows precise and accurate age determinations on these sediments.

Keywords: post-IR IRSL dating; fading; Japanese loess

  • [1] Aitken MJ, 1985. Thermoluminescence Dating. London, Academic Press: 359pp.

  • [2] Auclair M, Lamothe M and Hout S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurement 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0. http://dx.doi.org/10.1016/S1350-4487(03)00018-0 [Crossref]

  • [3] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565. DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.007 [Web of Science] [Crossref]

  • [4] Buylaert JP, Thiel C, Murray AS, Vandenberghe DAG, Yi S, Lu H, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38(4): 432–440, DOI 10.2478/s13386-011-0047-0. [Crossref] [Web of Science]

  • [5] Frechen M, Horváth E and Gábris G, 1997. Geochronology of Middle to Upper Pleistocene Loess Sections in Hungary. Quaternary Research 48(3): 291–312, DOI 10.1006/qres.1997.1929. http://dx.doi.org/10.1006/qres.1997.1929 [Crossref]

  • [6] Hayatsu K and Arai F, 1981. Tephrochronological study on the Shinanogawa tephra formations at the middle course of the Sinano River, central Japan. Journal of Geography (Chigakuzasshi) 91: 88–103 (in Japanese with English abstract).

  • [7] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-013 [Crossref]

  • [8] Kaizuka S, Koike K, Endo K, Yamazaki H and Suzuki T, 2000. Regional Geomorphology of the Japanese Islands. Vol. 4: Geomorphology of Kanto and Izu-Ogasawara. University of Tokyo Press: 349pp. (in Japanese).

  • [9] Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021. http://dx.doi.org/10.1016/j.radmeas.2008.01.021 [Crossref] [Web of Science]

  • [10] Lamothe M and Auclair M, 1999. A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals. Earth and Planetary Science Letters 171(3): 319–323, DOI 10.1016/S0012-821X(99)00180-6. http://dx.doi.org/10.1016/S0012-821X(99)00180-6 [Crossref]

  • [11] Lamothe M, Auclair M, Hamzaoui C and Huot, S, 2003. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements 37(4–5): 493–498, DOI 10.1016/S1350-4487(03)00016-7. http://dx.doi.org/10.1016/S1350-4487(03)00016-7 [Crossref]

  • [12] Machida H and Arai F, 2003. Atlas of Tephra in and around Japan. University of Tokyo Press: 337pp. (in Japanese).

  • [13] Miyairi Y, Yoshida K, Miyazaki Y, Matsuzaki H and Kaneoka I, 2004. Improved 14C dating of tephra layer (AT tephra, Japan) using AMS on selected organic fractions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224: 555–559, DOI 10.1016/j.nimb.2004.04.103. http://dx.doi.org/10.1016/j.nimb.2004.04.103 [Crossref]

  • [14] Morthekai P, Jain M, Murray AS, Thomsen KJ and Bøtter-Jensen L, 2008. Fading characteristics of martian analogue materials and the applicability of a correction procedure. Radiation Measurements 43(2–6): 672–678, DOI 10.1016/j.radmeas.2008.02.019. http://dx.doi.org/10.1016/j.radmeas.2008.02.019 [Web of Science] [Crossref]

  • [15] Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37(4–5): 377–381, DOI 10.1016/S1350-4487(03)00053-2. http://dx.doi.org/10.1016/S1350-4487(03)00053-2 [Crossref]

  • [16] Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The Effect of Preheating on the IRSL Signal from Feldspar. Radiation Measurements 44(5–6): 554–559, DOI 10.1016/j.radmeas.2009.02.004. http://dx.doi.org/10.1016/j.radmeas.2009.02.004 [Crossref] [Web of Science]

  • [17] Novothny Á, Horváth E and Frechen M, 2002. The loess profile of Albertirsa, Hungary — Improvements in loess stratigraphy by luminescence dating. Quaternary International 95–96: 155–163, DOI 10.1016/S1040-6182(02)00036-8. http://dx.doi.org/10.1016/S1040-6182(02)00036-8 [Crossref]

  • [18] Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-2 [Crossref]

  • [19] Suzuki T, 1995. Origin of so-called volcanic ash soil: thickness distribution in and around central Japan. Bulletin of the Volcanological Society of Japan 40: 167–176 (in Japanese with English abstract).

  • [20] Suzuki T, 2001. Iizuna-Kamitaru tephra group erupted from the Iizuna volcano of Myoko volcano group in the transition from isotope stage 6 to 5, and its significance for the chronological study of central Japan. Quaternary Research (Daiyonkikenkyu) 40: 29–41 (in Japanese with English abstract). http://dx.doi.org/10.4116/jaqua.40.29

  • [21] Suzuki T, Fujiwara T and Danhara T, 1998. Fission track ages of eleven Quaternary tephras in north Kanto and south Tohoku regions, central Japan. Quaternary Research (Daiyonkikenkyu) 37: 95–106 (in Japanese with English abstract). http://dx.doi.org/10.4116/jaqua.37.95

  • [22] Thiel C, Buylaert JP, Murray AS, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) — Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI: 10.1016/j.quaint.2010.05.018. http://dx.doi.org/10.1016/j.quaint.2010.05.018 [Web of Science]

  • [23] Thomsen KJ, Bøtter-Jensen L, Denby PM, Moska P and Murray AS, 2006. Developments in luminescence measurement techniques. Radiation Measurements 41(7–8): 768–773, DOI 10.1016/j.radmeas.2006.06.010. http://dx.doi.org/10.1016/j.radmeas.2006.06.010 [Crossref]

  • [24] Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.002 [Web of Science] [Crossref]

  • [25] Tsukamoto S, Murray A, Huot S, Watanuki T, Denby PM and Bøtter-Jensen L, 2007. Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiation Measurements 42(2): 190–197, DOI 10.1016/j.radmeas.2006.07.008. http://dx.doi.org/10.1016/j.radmeas.2006.07.008 [Crossref] [Web of Science]

  • [26] Watanuki T, Murray AS and Tsukamoto S, 2005. Quartz and poly-mineral luminescence dating of Japanese loess over the last 0.6 Ma: Comparison with an independent chronology. Earth and Planetary Science Letters 240(3–4): 774–789, DOI 10.1016/j.epsl.2005.09.027. http://dx.doi.org/10.1016/j.epsl.2005.09.027

  • [27] Wintle AG, 1973. Anomalous Fading of Thermoluminescence in Minerals. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a0 [Crossref]


Published Online: 2011-09-22

Published in Print: 2011-12-01


Citation Information: Geochronometria. Volume 38, Issue 4, Pages 369–378, ISSN (Online) 1897-1695, DOI: https://doi.org/10.2478/s13386-011-0043-4, September 2011

© 2011 Silesian University of Technology, Gliwice, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[3]
Sally E. Lowick, Marius W. Buechi, Dorian Gaar, Hans R. Graf, and Frank Preusser
Boreas, 2015, Volume 44, Number 3, Page 459
[4]
Jingran Zhang, Sumiko Tsukamoto, Veit Nottebaum, Frank Lehmkuhl, and Manfred Frechen
Quaternary Geochronology, 2015
[5]
Lee J. Arnold, Martina Demuro, Josep María Parés, Alfredo Pérez-González, Juan Luis Arsuaga, José María Bermúdez de Castro, and Eudald Carbonell
Quaternary International, 2014
[8]
Romée H. Kars, Tony Reimann, Christina Ankjaergaard, and Jakob Wallinga
Boreas, 2014, Volume 43, Number 4, Page 780
[9]
Sumiko Tsukamoto, Kyoko Kataoka, Takashi Oguchi, Andrew S. Murray, and Goro Komatsu
Quaternary Geochronology, 2014, Volume 20, Page 39
[10]
Sumiko Tsukamoto, Kyoko Kataoka, and Yasuo Miyabuchi
Geochronometria, 2013, Volume 40, Number 4
[11]
A.S. Murray, E.D. Schmidt, T. Stevens, J.-P. Buylaert, S.B. Marković, S. Tsukamoto, and M. Frechen
CATENA, 2014, Volume 117, Page 34
[12]
Christine Thiel, Erzsébet Horváth, and Manfred Frechen
Quaternary International, 2014, Volume 319, Page 88
[13]
Christine Thiel, Jan-Pieter Buylaert, Andrew S. Murray, Noureddine Elmejdoub, and Younes Jedoui
Quaternary Geochronology, 2012, Volume 10, Page 209
[14]
Sumiko Tsukamoto, Mayank Jain, Andrew Murray, Christine Thiel, Esther Schmidt, Lara Wacha, Reiner Dohrmann, and Manfred Frechen
Radiation Measurements, 2012, Volume 47, Number 9, Page 903
[15]
Ann-Kathrin Schatz, Jan-Pieter Buylaert, Andrew Murray, Thomas Stevens, and Thomas Scholten
Quaternary Geochronology, 2012, Volume 10, Page 68
[16]
Jan-Pieter Buylaert, Mayank Jain, Andrew S. Murray, Kristina J. Thomsen, Christine Thiel, and Reza Sohbati
Boreas, 2012, Volume 41, Number 3, Page 435
[17]
Sally E. Lowick, Mareike Trauerstein, and Frank Preusser
Quaternary Geochronology, 2012, Volume 8, Page 33
[18]
Jan-Pieter Buylaert, Christine Thiel, Andrew Murray, Dimitri Vandenberghe, Shuangwen Yi, and Huayu Lu
Geochronometria, 2011, Volume 38, Number 4

Comments (0)

Please log in or register to comment.