Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geochronometria

1 Issue per year


IMPACT FACTOR 2016: 1.426

CiteScore 2016: 1.42

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1897-1695
See all formats and pricing
More options …
Volume 40, Issue 2

Issues

U-Pb zircon age of the youngest magmatic activity in the High Tatra granites (Central Western Carpathians)

Jolanta Burda / Aleksandra Gawęda / Urs Klötzli
Published Online: 2013-03-16 | DOI: https://doi.org/10.2478/s13386-013-0106-9

Abstract

Detailed cathodoluminescence (CL) imaging of zircon crystals, coupled with Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) U-Pb zircon dating was used to develop new insights into the evolution of granitoids from the High Tatra Mountains. The zircon U-Pb results show two distinct age groups (350±5 Ma and 337±6 Ma) recorded from cores and rims domains, respectively. Obtained results point that the last magmatic activity in the Tatra granitoid intrusion occurred at ca. 330 Ma. The previously suggested age of 314 Ma reflects rather the hydrothermal activity and Pb-loss, coupled with post-magmatic shearing.

Keywords: Central Western Carpathians; High Tatra granite; U-Pb zircon age

  • [1] Broska I and Uher P, 2001. Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologia Carpathica 52: 79–90. Google Scholar

  • [2] Burchart J, 1970. Skały krystaliczne wyspy Goryczkowej w Tatrach (Rocks of the Goryczkowa “crystalline island” in the Tatra Mountains.). Studia Geologica Polonica 32: 7–183 (in Polish). Google Scholar

  • [3] Burda J, 2006. U-Pb zircon age of partial melting in metapelites from the Western Tatra Mts. Mineralogia Polonica — Special Papers, 29: 111–114. Google Scholar

  • [4] Burda J, 2010. Internal structures and dating of complex zircons from High Tatra massif granodiorites, Poland. 10 thInternational conference -Methods of absolute chronology- 22–25 April Gliwice, Poland. Abstracts & Programme: 79. Google Scholar

  • [5] Burda J and Klötzli U, 2007. LA-MC-ICP-MS U-Pb zircon geochronology of the Goryczkowa type granite — Tatra Mts., Poland. Mineralogia Polonica — Special Papers 31: 89–92. Google Scholar

  • [6] Burda J and Gawęda A, 2009. Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110: 373–385. http://dx.doi.org/10.1016/j.lithos.2009.01.010CrossrefGoogle Scholar

  • [7] Burda J and Klötzli U, 2011. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating. Mineralogy and Petrology 102: 99–115. http://dx.doi.org/10.1007/s00710-011-0176-4Web of ScienceCrossrefGoogle Scholar

  • [8] Burda J, Gawęda A and Klötzli U, 2011. Magma hybridization in the Western Tatra Mountains granitoid intrusion (S-Poland, Western Carpathians). Mineralogy and Petrology 103: 19–36. http://dx.doi.org/10.1007/s00710-011-0150-1CrossrefWeb of ScienceGoogle Scholar

  • [9] Deditius A, 2004. Charakterystyka i wiek izotopowy blastezy muskowi-tów ze stref mylonitycznych w skałach krystalicznych Tatr Zachodnich (Petrology and izotopic age of the muscovite blasthesis from the mylonitic zones in the crystalline rocks of the Western Tatra Mountains). Geologia 16. Wydawnictwo Uniwersytetu Ślą-skiego (in Polish, English abstract). Google Scholar

  • [10] Gawęda A, 2008. Apatite-rich enclave in the High Tatra granite, Western Carpathians: petrological and geochronological study. Geologia Carpathica 59(4): 295–306. Google Scholar

  • [11] Gawęda A, 2009. Enclaves in the High Tatra Granite. University of Silesia publishing House. Monographic series 2637, Katowice: 180 pages (in Polish, English abstract). Google Scholar

  • [12] Gawęda A, Doniecki T, Burda J and Kohut M, 2005. The petrogenesis of quartz-diorites from the Tatra Mountains (Central Western Carpathians): an example of magma hybridisation. Neues Jahrbuch für Mineralogie-Abhandlungen 1: 95–109. http://dx.doi.org/10.1127/0077-7757/2005/0181-0005CrossrefGoogle Scholar

  • [13] Gawęda A and Sikorska M, 2009. Alkali feldspar megacrysts from the High Tatra granite — indicators of magma mixing/mingling processes. Mineralogia — Special Papers 35: 82. Google Scholar

  • [14] Gawęda A and Szopa K, 2011. The origin of magmatic layering in the High Tatra granite, Central Western Carpathians — implications for the formation of granitoid plutons. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103: 129–144. http://dx.doi.org/10.1017/S1755691012010146CrossrefWeb of ScienceGoogle Scholar

  • [15] Gawęda A and Włodyka R, 2013. The origin of post-magmatic Ca-Al minerals in granite-diorite mingling zones: The Tatra granitoid intrusion, Western Carpathians. Neues Jahrbuch für Mineralogie-Abhandlungen (in print). Google Scholar

  • [16] Grabowski J and Gawęda A, 1999. Preliminary paleomagnetic study of the High Tatra granites, Central Western Carpathians, Poland. Geological Quaterly 43(3): 263–276. Google Scholar

  • [17] Hildreth W, 2004. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. Journal of Volcanology and Geothermal Research 136(3–4): 169–198, DOI 10.1016/j.jvolgeores.2004.05.019. http://dx.doi.org/10.1016/j.jvolgeores.2004.05.019CrossrefGoogle Scholar

  • [18] Janak M, 1994. Variscan uplift of the crystalline basement, Tatra Mts., Central Western Carpathians: evidence from 40Ar/39Ar laser probe dating of biotite and P-T-t paths. Geologica Carpathica 45(5): 293–300. Google Scholar

  • [19] Klötzli U and Parrish RR, 1996. Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineralogy and Petrology 58: 197–214. http://dx.doi.org/10.1007/BF01172096CrossrefGoogle Scholar

  • [20] Kohút M and Janak M, 1994. Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geologica Carpathica 45(5): 301–311. Google Scholar

  • [21] Kohút M and Nabelek PI, 2008. Geochemical and isotopic (Sr, Nd and O) constraints on sources of Variscan granites in the Western Carpathians — implications for crustal structure and tectonics. Journal of Geosciences 53: 307–322, DOI 10.3190/jgeosci.033. CrossrefWeb of ScienceGoogle Scholar

  • [22] Kohút M and Sherlock S, 2003. Laser microprobe 40Ar-39Ar analysis of pseudotachylyte and host rocks from the Tatra Mountains, Slovakia: Evidence for Late Paleogene seismic/tectonic activity. Terra Nova 15(6): 417–424, DOI 10.1046/j.1365-3121.2003.00514.x. http://dx.doi.org/10.1046/j.1365-3121.2003.00514.xCrossrefGoogle Scholar

  • [23] Leichmann, J, Jacher-Sliwczynska K and Broska I, 2009. Element mobility and fluid path ways during feldspar alteration: textural evidence from cathodoluminescence and electron microprobe study of an example from tonalites (High Tatra, Poland-Slowakia). Neues Jahrbuch für Mineralogie-Abhandlungen 186(1): 1–10. http://dx.doi.org/10.1127/0077-7757/2009/0124CrossrefGoogle Scholar

  • [24] Ludwig KR, 2003. Isoplot/Ex version 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication 4: 1–74. Google Scholar

  • [25] Morozewicz K, 1914. Über die Tatragranite (About the Tatra granite). Neues Jahrbuch für Geologie und Palaontologie-Abhandlungen 39: 289–345. Google Scholar

  • [26] Poller U, Janak M, Kohút M and Todt W, 2000. Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). International Journal of Earth Sciences 89(2): 336–349, DOI 10.1007/s005310000082. http://dx.doi.org/10.1007/s005310000082CrossrefGoogle Scholar

  • [27] Poller U and Todt W, 2000. U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science 91: 235–243. http://dx.doi.org/10.1017/S0263593300007409CrossrefGoogle Scholar

  • [28] Poller U, Todt W, Kohút M and Janak M, 2001. Nd, Sr, Pb isotope study of the Western Carpathians: implications for the Paleozoic evolution. Schweizerische Mineralogische und Petrographische Mitteilungen 81: 159–174. Google Scholar

  • [29] Pupin JP, 1980. Zircon and granite petrology. Contribution to Mineralogy and Petrology 73: 207–220. http://dx.doi.org/10.1007/BF00381441CrossrefGoogle Scholar

  • [30] Sláma J, Kosler J, Schaltegger U, Tubrett M and Gutjahr M, 2006. New natural zircon standard for laser ablation ICP-MS U-Pb geochronology. Abstract WP05. Winter Conference on Plasma Spectrochemistry, Tucson: 187–188. Google Scholar

  • [31] Stacey JS and Kramers JD, 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters 26(2): 207–221, DOI 10.1016/0012-821X(75)90088-6. http://dx.doi.org/10.1016/0012-821X(75)90088-6CrossrefGoogle Scholar

  • [32] Sun SS and McDonough WF, 1989. Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins. Geological Society London Special Publications 42: 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19CrossrefGoogle Scholar

  • [33] Sylvester PJ and Ghaderi M, 1997. Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology 141(1-2): 49–65, DOI 10.1016/S0009-2541(97)00057-0. http://dx.doi.org/10.1016/S0009-2541(97)00057-0CrossrefGoogle Scholar

  • [34] Watson TM and Harrison EB, 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64(2): 295–304, DOI 10.1016/0012-821X(83)90211-X. http://dx.doi.org/10.1016/0012-821X(83)90211-XCrossrefGoogle Scholar

  • [35] Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W, 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19: 1–23. http://dx.doi.org/10.1111/j.1751-908X.1995.tb00147.xCrossrefGoogle Scholar

About the article

Published Online: 2013-03-16

Published in Print: 2013-06-01


Citation Information: Geochronometria, Volume 40, Issue 2, Pages 134–144, ISSN (Online) 1897-1695, DOI: https://doi.org/10.2478/s13386-013-0106-9.

Export Citation

© 2012 Silesian University of Technology, Gliwice, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Aleksandra Gawęda, Jolanta Burda, Jan Golonka, Urs Klötzli, David Chew, Krzysztof Szopa, and Michael Wiedenbeck
Gondwana Research, 2017, Volume 48, Page 134
[2]
Aleksandra Gawęda, Krzysztof Szopa, David Chew, Urs Klötzli, Axel Müller, Magdalena Sikorska, and Paulina Pyka
Geologica Carpathica, 2016, Volume 67, Number 5
[3]
M. Śmigielski, H. D. Sinclair, F. M. Stuart, C. Persano, and P. Krzywiec
Tectonics, 2016, Volume 35, Number 1, Page 187
[5]
Paulina Pyka, Aleksandra Gawęda, Krzysztof Szopa, Axel Müller, and Magdalena Sikorska
Mineralogia, 2015, Volume 0, Number 0
[6]
Aleksandra Gawęda, Jolanta Burda, Urs Klötzli, Jan Golonka, and Krzysztof Szopa
International Journal of Earth Sciences, 2016, Volume 105, Number 4, Page 1153
[8]
Zhenshan Pang, Yangsong Du, Yi Cao, Fuping Gao, Gongwen Wang, and Qian Dong
Journal of Earth System Science, 2014, Volume 123, Number 4, Page 875

Comments (0)

Please log in or register to comment.
Log in