Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

IMPACT FACTOR 2016: 1.426

CiteScore 2016: 1.42

SCImago Journal Rank (SJR) 2016: 0.543
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 41, Issue 4


Comparing different post-IR IRSL approaches for the dating of Holocene coastal foredunes from Ruhnu Island, Estonia

Frank Preusser / Merle Muru / Alar Rosentau
Published Online: 2014-10-01 | DOI: https://doi.org/10.2478/s13386-013-0169-7


Different post-IR Infrared Stimulated Luminescence (IRSL) approaches are applied to sediments from a Holocene coastal foredune sequence on Ruhnu Island in the eastern Baltic Sea. The comparison of D e-values and ages determined by the different approaches is complimented by fading and bleaching experiments. The fading experiments imply strong fading of IRSL (50°C) signals and no fading of any of the post-IR IRSL signals, but this is not confirmed by the determined D e-values. In fact, post-IR IRSL (150°C) D e-values agree within errors with those calculated for IRSL (50°C). From the bleaching experiments it is inferred that the higher values observed for post-IR IRSL at more elevated stimulation temperatures (225°C/290°C) are likely related to either thermal transfer and/or slow-to-bleach components within the signal. For the dating of the Holocene foredune sequence of Ruhnu Island, the post-IR IRSL (150°C) approach is preferred and these agree with the limited independent age control available from radiocarbon dating. Accordingly, the sequence formed between ca. 7.0 ka and 2.5 ka ago.

Keywords: luminescence; post-IR IRSL; foredunes; Holocene; Baltic Sea

  • [1] Adamiec G and Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37–50. Google Scholar

  • [2] Andrén T, Björck S, Andren E, Conley LZ and Anjar J, 2011. The development of the Baltic Sea Basin during the Last 130 ka. In: Harff J, Björck S and Hoth P, eds., The Baltic Sea Basin. Central and Eastern European Development Studies, Springer, Berlin: 75–97. http://dx.doi.org/10.1007/978-3-642-17220-5_4Google Scholar

  • [3] Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0. http://dx.doi.org/10.1016/S1350-4487(03)00018-0CrossrefGoogle Scholar

  • [4] Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360. Google Scholar

  • [5] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.007Web of ScienceCrossrefGoogle Scholar

  • [6] Ekman M, 1996. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8(2): 158–165, DOI 10.1111/j.1365-3121.1996.tb00739.x. http://dx.doi.org/10.1111/j.1365-3121.1996.tb00739.xCrossrefGoogle Scholar

  • [7] Gaar D and Preusser F, 2012. Luminescence dating of mammoth re-mains from northern Switzerland. Quaternary Geochronology 10: 257–263, DOI 10.1016/j.quageo.2012.02.007. http://dx.doi.org/10.1016/j.quageo.2012.02.007Web of ScienceCrossrefGoogle Scholar

  • [8] Hesp P, 2002. Foredunes and blow outs: initiation, geomorphology and dynamics. Geomorphology 48(1–3): 245–268, DOI 10.1016/S0169-555X(02)00184-8. http://dx.doi.org/10.1016/S0169-555X(02)00184-8CrossrefGoogle Scholar

  • [9] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-013CrossrefGoogle Scholar

  • [10] Jain M and Ankjærgaard C, 2011. Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements 46(3): 292–309, DOI 10.1016/j.radmeas.2010.12.004. http://dx.doi.org/10.1016/j.radmeas.2010.12.004Web of ScienceCrossrefGoogle Scholar

  • [11] Kala E and Einasto R, 1979. Liivi lahe piirkonna geoloogiline ehitus ja areng. (Geology and development of the Gulf of Riga region). Ees-ti Loodus 11: 708–711 (in Estonian). Google Scholar

  • [12] Kars RH, Busschers FS and Wallinga J, 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 74–86, DOI 10.1016/j.quageo.2012.05.001. http://dx.doi.org/10.1016/j.quageo.2012.05.001CrossrefWeb of ScienceGoogle Scholar

  • [13] Kask J, Lepland A and Perens R, 1994. Geology of the Island of Ruhnu from the remote past up to date. Eesti TA Geoloogia Instituut and Eesti Geoloogiakeskus, Tallinn-Kuressaare (in Estonian with Eng-lish summary). Google Scholar

  • [14] Kriiska A and Lõugas L, 2005. Formation of Ruhnu Island and its early settlement history. Estonia Maritima 7: 119–132. Google Scholar

  • [15] Kulig G, 2005. Erstellung einer Auswertesoftware zur Altersbestimmung mittels Lumineszenzverfahren. BSc thesis, Faculty of Mathematics and Informatics TU Freiberg, Germany (unpublished). Google Scholar

  • [16] Li B and Li S-H, 2011. Luminescence dating of K-feldspar from sedi-ments: A protocol without anomalous fading correction. Quaternary Geochronology 6: 468–479, DOI 10.1016/j.quageo.2011.05.001. http://dx.doi.org/10.1016/j.quageo.2011.05.001Web of ScienceCrossrefGoogle Scholar

  • [17] Li B, Roberts RG and Jacobs Z, 2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: Improved procedures for luminescence dating of Quater-nary sediments. Quaternary Geochronology 17: 1–13, DOI 10.1016/j.quageo.2013.03.006. http://dx.doi.org/10.1016/j.quageo.2013.03.006Web of ScienceCrossrefGoogle Scholar

  • [18] Lowick SE, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003. http://dx.doi.org/10.1016/j.quageo.2011.12.003Web of ScienceCrossrefGoogle Scholar

  • [19] Madsen AT, Buylaert JP and Murray AS, 2011. Luminescence dating of young coastal deposits from New Zealand using feldspar. Geochronometria 38(4): 379–390, DOI 10.2478/s13386-011-0042-5. http://dx.doi.org/10.2478/s13386-011-0042-5Web of ScienceCrossrefGoogle Scholar

  • [20] Olley JM, Roberts RG and Murray AS, 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen’s Cave, Nullarbor Plain, Australia: Implications for dose rate determinations. Radiation Measurements 27(2): 433–443, DOI 10.1016/S1350-4487(96)00114-X. http://dx.doi.org/10.1016/S1350-4487(96)00114-XCrossrefGoogle Scholar

  • [21] Prescott J and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8. http://dx.doi.org/10.1016/1350-4487(94)90086-8CrossrefGoogle Scholar

  • [22] Preusser F and Kasper HU, 2001. Comparison of dose rate determination using high-resolution gamma spectrometry and inductively coupled plasma-mass spectrometry. Ancient TL 19: 19–24. Google Scholar

  • [23] Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI 10.1016/j.radmeas.2006.04.019. http://dx.doi.org/10.1016/j.radmeas.2006.04.019CrossrefGoogle Scholar

  • [24] Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments — a test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6: 207–222, DOI 10.1016/j.quageo.2010.10.001. http://dx.doi.org/10.1016/j.quageo.2010.10.001CrossrefWeb of ScienceGoogle Scholar

  • [25] Reimann T and Tsukamoto S, 2012. Dating the recent past (<500 years) by post-IR IRSL feldspar — Examples from the North Sea and Bal-tic Sea coast. Quaternary Geochronology 10: 180–187, DOI 10.1016/j.quageo.2012.04.011. http://dx.doi.org/10.1016/j.quageo.2012.04.011CrossrefWeb of ScienceGoogle Scholar

  • [26] Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser K F, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM and van der Plicht J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55: 1869–1887. http://dx.doi.org/10.2458/azu_js_rc.55.16947Google Scholar

  • [27] Richter D, Pintaske R, Dornich K and Krbetscheck M, 2012. A novel beta source design for uniform irradiation in dosimetric application. Ancient TL 30: 57–63. Google Scholar

  • [28] Richter D, Richter A and Dornich K, 2013. Lexsyg — A new system for luminescence research. Geochronometria 40(4): 220–228, DOI 10.2478/s13386-013-0110-0. http://dx.doi.org/10.2478/s13386-013-0110-0Web of ScienceCrossrefGoogle Scholar

  • [29] Rosentau A, Veski S, Kriiska A, Aunap R, Vassiljev J, Saarse L, Hang T, Heinsalu A and Oja T, 2011. Palaeogeographic model for the SW Estonian coastal zone of the Baltic Sea. In: Harff J, Björck S and Hoth P, eds., The Baltic Sea Basin. Central and Eastern Euro-pean Development Studies, Springer, Berlin: 165–188. Google Scholar

  • [30] Rosentau A, Joeleht A, Plado J, Aunap R, Muru M and Eskola KO, 2013. Development of the Holocene foredune plain in the Narva-Joesuu area, eastern Gulf of Finland. Geological Quarterly 57(1): 89–100, DOI 10.7306/gq.1077. CrossrefWeb of ScienceGoogle Scholar

  • [31] Saarse L, Vassiljev J and Miidel A, 2003. Simulation of the Baltic Sea shorelines in Estonia and neighbouring areas. Journal of Coastal Research 19: 261–268. Google Scholar

  • [32] Saarse L, Vassiljev J, Miidel A and Niinemets E, 2006. Holocene buried organic sediments in Estonia. Proceedings Estonian Academy of Sciences - Geology 55: 296–320. Google Scholar

  • [33] Saarse L, Vassiljev J and Rosentau A, 2009. Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica 22: 51–62. Google Scholar

  • [34] Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geo-chronology 4(5): 353–362, DOI 10.1016/j.quageo.2009.05.015. CrossrefGoogle Scholar

  • [35] Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess pro-file (Austria) — Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI 10.1016/j.quaint.2010.05.018. http://dx.doi.org/10.1016/j.quaint.2010.05.018Web of ScienceCrossrefGoogle Scholar

  • [36] Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laborato-ry fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.002Web of ScienceCrossrefGoogle Scholar

  • [37] Veski S, Heinsalu A, Klassen V, Kriiska A, Lõugas L, Poska A and Saluäär U, 2005. Early Holocene coastal settlement and palaeoen-vironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia. Quaternary International 130(1): 75–85, DOI 10.1016/j.quaint.2004.04.033. http://dx.doi.org/10.1016/j.quaint.2004.04.033CrossrefGoogle Scholar

  • [38] Wallinga J, Bos AJJ, Dorenbos P, Murray AS and Schokker J, 2007. A test case for anomalous fading correction in IRSL dating. Quater-nary Geochronology 2(1–4): 216–221, DOI 10.1016/j.quageo.2006.05.014. http://dx.doi.org/10.1016/j.quageo.2006.05.014CrossrefGoogle Scholar

  • [39] Wintle AG, 1973. Anomalous fading of thermo-luminescence in miner-al samples. Nature 245: 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a0CrossrefGoogle Scholar

  • [40] Zander A, Degering D, Preusser F, Kasper HU and Brückner H, 2007. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE.: Radioactive disequilibria in the uranium decay series. Quaternary Geochronology 2(1–4): 123–128, DOI 10.1016/j.quageo.2006.04.003. http://dx.doi.org/10.1016/j.quageo.2006.04.003Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-10-01

Published in Print: 2014-12-01

Citation Information: Geochronometria, Volume 41, Issue 4, Pages 342–351, ISSN (Online) 1897-1695, DOI: https://doi.org/10.2478/s13386-013-0169-7.

Export Citation

© 2013 Silesian University of Technology, Gliwice, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Merle Muru, Alar Rosentau, Frank Preusser, Jüri Plado, Ivo Sibul, Argo Jõeleht, Stefan Bjursäter, Raivo Aunap, and Aivar Kriiska
Geomorphology, 2017
Edyta Kalińska-Nartiša, Normunds Stivrins, and Ieva Grudzinska
Estuarine, Coastal and Shelf Science, 2017
Tony Reimann, Andrea Román-Sánchez, Tom Vanwalleghem, and Jakob Wallinga
Quaternary Geochronology, 2017, Volume 42, Page 1
Laine Clark-Balzan, Ash Parton, Paul S. Breeze, Huw S. Groucutt, and Michael D. Petraglia
Quaternary Geochronology, 2017
Albert Matter, Ayman Mahjoub, Eike Neubert, Frank Preusser, Antje Schwalb, Sönke Szidat, and Gerwin Wulf
Geomorphology, 2016, Volume 270, Page 88
Nicole Klasen, Markus Fiebig, and Frank Preusser
Quaternary International, 2016, Volume 420, Page 249
Tony Reimann, Christina Ankjærgaard, and Jakob Wallinga
Radiation Measurements, 2015, Volume 81, Page 275

Comments (0)

Please log in or register to comment.
Log in