Arnold LJ, Roberts R, Galbraith R and DeLong RF, 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. *Quaternary Geochronology* 4: 306–325, . CrossrefGoogle Scholar

Arnold LJ, Demuro M and Navazo Ruiz M, 2012. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements. *Radiation Measurements* 47: 652-658, . CrossrefGoogle Scholar

Blain S, Guibert P, Bouvier A, Vieillevigne E, Bechtel F, Sapin C and Baylé M, 2007. TL-dating applied to building archaeology: The case of the medieval church Notre-Dame-sous-Terre (Mont-Saint-Michel, France). *Radiation Measurements* 42: 1483–1491, . CrossrefGoogle Scholar

B⊘tter-Jensen L, Solongo S, Murray AS, Banerjee D and Jungner H, 2000. Using OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. *Radiation Measurements* 32(5–6): 841–845, . CrossrefGoogle Scholar

Brennan BJ, Lyons RG and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. *International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements* 18: 249–253, . CrossrefGoogle Scholar

Bulur E, Duller GAT, Solongo S, B⊘tter-Jensen L and Murray A, 2001. LM-OSL from single grains of quartz: a preliminary study. *Radiation Measurements* 35: 79–85, . CrossrefGoogle Scholar

Christophe C, Philippe A, Guérin G, Mercier N and Guibert P, submitted. A Bayesian model for the OSL dating of poorly bleached sediment samples. *Radiation measurements*.Google Scholar

Choi JH, Murray AS, Cheong CS and Hong SC, 2009. The dependence of dose recovery experiments on the bleaching of natural quartz OSL using different light sources. *Radiation Measurements* 44: 600–605, . CrossrefGoogle Scholar

Fisher A, 2008. Archäologie in Basel. (Archaeology in Basel). Unter uns, 255, Basel, p. 255. (in French). Google Scholar

Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: part I, experimental design and statistical models. *Archaeometry* 41(2): 339–364, . CrossrefGoogle Scholar

Grainger S, 2009. *Development of techniques for high-resolution spatially resolved elemental analysis in materials of interest in luminescence dating*. Master thesis, Durham university, Great Britain. Goedicke C, 2011. Dating mortar by optically stimulated luminescence: a feasibility study. *Geochronometria* 38(1): 42–49, . CrossrefGoogle Scholar

Goedicke C, 2003. Dating historical calcite mortar by blue OSL: results from known age samples. *Radiation Measurements* 37: 409–415, . CrossrefGoogle Scholar

Gueli AM, Stella G, Troja SO, Burrafato G, Fontana D, Ristuccia GM and Zuccarello AR, 2010. Historical buildings: Luminescence dating of fine grains from bricks and mortar. *Il Nuovo cimento* 125B, . CrossrefGoogle Scholar

Götze J, Plötze M and Habermann D, 2001. Origin, spectral characteristics and practical applications of the cathodoluminescnece (CL) of quartz - a review. *Mineralogy & Petrology* 71: 225–250, . CrossrefGoogle Scholar

Guérin G, Combès B, Lahaye C, Thomsen K, Tribolo C, Urbanova P, Guibert P, Mercier N and Valladas H, 2015. Testing the accuracy of a Bayesian central-dose model for single-grain OSL, using known-age samples. *Radiation Measurements* 74: 1–9, . CrossrefGoogle Scholar

Guérin G, Myank J, Thomsen K, Murray A and Mercier N, 2015. Modelling dose rate to single grains of quartz in well-sorted sand samples: The dispersion arising from the presence of potassium feldspars and implications for single grain OSL dating. *Quaternary Geochronology* 27: 52–65, . CrossrefGoogle Scholar

Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. *Ancient TL* 29: 5–8. Google Scholar

Guibert P, Christophe C, Urbanova P, Guérin G and Blain S, 2000. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: towards a new tool for single grain OSL dating of poorly bleached mortars. *Radiation Measurements*. Submitted.Google Scholar

Guibert P, Bailiff IK, Blain S, Gueli AM, Martini M, Sibilia E, Stella G and Troja S, 2009a. Luminescence dating of architectural ceramics from an early medieval abbey: the St-Philbert intercomparison (Loire Atlantique, France). *Radiation Measurements* 44: 488–493, . CrossrefGoogle Scholar

Guibert P, Lahaye C and Bechtel F, 2009b. The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal cave (Dordogne, France). *Radiation Measurements* 44: 223–231, . CrossrefGoogle Scholar

Guibert P and Schvoerer M, 1991. TL-dating: Low background gamma spectrometry as a tool for the determination of the annual dose. *Nuclear Tracks Radiation Measurements* 18(1–2): 231–238, . CrossrefGoogle Scholar

Hourcade D and Maurin L, 2013. Mars Grannus à Cassinomagus (Chassenon, Charente). *Aquitania* 29: 137–153. (in French). Google Scholar

Hourcade D, Calamy L, Méaudre JC, Morin T, Robert B and Soulas S, 2010. *Thermes de Longeas: Le rez de chaussée des thermes. Cour de chauffe et systèmes de soutènement des thermes de Chassenon. Report 2012, (Longeas thermal baths: ground floor of the baths. Heating yard and supporting system of thermal baths in Chassenon. Report 2012)*, SRA Pointou-Charentes, SRA Pointou-Charentes. Google Scholar

Hourcade D, 2013. Amphithéâtre du Palais-Gallien (Palais-Gallien amphitheatre). 80–88 In: C. Doulan (dir.), *Bordeaux Carte archéologique de la Gaule* 33(2): Paris.Google Scholar

Hourcade D, Bernard K, Bost JP, Coutelas A, Doulan C, Espinasse L, Guibert P, Jean-Courret E, Maleret S, Meunier C, Michel C, Mora P, Morin T, Piot A, Régaldo P, Sanchez C, Sireix C and Soulas S, 2011. Le Palais-Gallien de Bordeaux. Histoire et architecture (2010–2012). (Palais-Gallien of Bordeaux. History and architecture (2010–2012)). *Rapport 2011*, 3 vol., SRA Aquitaine, 900 p. (in French). Google Scholar

Hueglin S, 2011. Medieval Mortar Mixers Revisited. Basle and Beyond. *Zeitschrift für Archäologie des Mittelalters* 39: 189–212. Google Scholar

Jacobs Z, Duller GAT, Wintle AG, 2006. Interpretation of single grain De distributions and calculation of De. *Radiation Measurements* 41: 264-277, . CrossrefGoogle Scholar

Jacobs Z, Hayes EE, Roberts GR, Galbraith RF and Henshilwood CS, 2013. An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. *Journal of archaeological science* 40: 579–594, . CrossrefGoogle Scholar

Jain M, Thomsen KJ, B⊘tter-Jensen L and Murray AS, 2004. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: results from single grains and small aliquots of quartz. *Radiation Measurements* 38: 101–109, . CrossrefGoogle Scholar

Krbetschek MR, Göetze J, Dietrich A and Trautmann T, 1998. Spectral information from minerals relevant for luminescence dating. *Radiation Measurements* 27: 695–748, . CrossrefGoogle Scholar

Lanos P and Dufresne P, 2013. Chassenon (Charente) Thermes de Cassinmagus, Cave 10. Analyse archéomagnétique. (Chassenon (Charente) Cassinmagus thermal baths, Cave 10. Archeomagnetic analyses). *Rapport 2013*. (in French). Google Scholar

Lanos P and Dufresne P, 2013. Antibes (Alpes-Maritimes), Château Grimaldi, Mur MR 10003. Analyse archéomagnétique. (Antibes (Alpes-Maritimes), Grimaldi Castle, Wall MR 10003. Archeomagnetic analyses). *Rapport 2013*. (in French). Google Scholar

Lanos P and Dufresne P, 2013. Palais-Gallien (Bordeaux). Analyse archéomagnétique. (Palais-Gallien (Bordeaux). Archeomagnetic analyses). *Rapport 2013*. (in French). Google Scholar

Lebrun B, Tribolo C, Martin L and Mercier N, in preparation. Assessing OSL equivalent doses dispersion through sediment modeling: a case study of dose rate heterogeneities simulation for West African sediments. *(UK Luminescence and ESR Meeting 2016* Liverpool) in preparation.Google Scholar

Liritzis I, Mavrikis D, Zacharias N, Sakalis A, Tsirliganis N and Polymeris GS, 2011. Potassium determinations using SEM, FAAS and XRF: Some experimental notes. *Mediterranean Archaeology and Archaeometry* 11(2): 169–179. Google Scholar

Martin L, Mercier N, Incerti S, Lefrais Y, Pecheyran C, Guérin G, Jarry M, Bruxelles L, Bon F and Pallier C, 2015. Dosimetric study of sediments at the beta dose rate scale: Characterization and modelization with the DosiVox software. *Radiation Measurements* 81: 134–141, 10.1016/j.radmeas.2015. 02.008. CrossrefGoogle Scholar

Mayya YS, Mortheka P, Murari MK and Singhvi AK, 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. *Radiation Measurement*s 41: 1032–1039, . CrossrefGoogle Scholar

Medialdea A, Thomsen KJ, Murray AS and Benito G, 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. *Radiation Measurements* 22: 11–24, . CrossrefGoogle Scholar

Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. *Archaeometry* 21: 61–72, . CrossrefGoogle Scholar

Michel A, 2012. Autour de l’identification des mausolées: le cas de Saint-Seurin de Bordeaux. Mausolées & Églises, IV^{e}-VIII^{e} siècle. (About the identification of mausoleums: case study of Saint Seurin in Bordeaux. Mausolées & Churches, IVth-VIIIth century, Hortus Artium Medievalium). *Hortus Artium Medievalium*, 18(2). (in French). Google Scholar

Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. *Radiation Measurements* 29: 503–515, . CrossrefGoogle Scholar

Murray AS and Wintle A, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative dose protocol. *Radiation Measurements* 32: 523–538, . CrossrefGoogle Scholar

Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. *Geochronometria* 21: 1–16. Google Scholar

Panzeri L, 2013. Mortar and surface dating with optically stimulated luminescence (OSL): innovative techniques for the age determination of buildings. *Nuovo Cimento della* 36(4): 205–216. Google Scholar

Pietzch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. *Quaternary Geochronology* 3: 365–376, . CrossrefGoogle Scholar

Ruffer D and Preusser F, 2009. Potential of autoradiography to detect spatially resolved radiation patterns in the context of trapped charge dating. *Geochronometria* 34: 1–13, . CrossrefGoogle Scholar

Sanzelle S, Fain J and Mailler D, 1986. Theoretical and experimental study of alpha counting efficiency using LR-115 Kodak SSTND applied to dosimetry in the field of thermoluminescence dating. *International Journal of Radiation Applications and Instrumentation*. Part D. *Nuclear Tracks and Radiation Measurements* 12: 913–916, . CrossrefGoogle Scholar

Sim AK, Thomsen KJ, Murray AS, Jacobsen G, Drysdale R and Erskine W, 2013. Dating recent floodplain sediments in the Hawkesbury-Nepean river system using single grain quartz OSL. *Boreas* 43(1): 1–21, . CrossrefGoogle Scholar

Stella G, Fontana D, Gueli AM and Troja SO, 2013. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. *Geochronometria* 40(3): 153–164, . CrossrefGoogle Scholar

Thomsen KJ, Murray A and Jain M, 2012. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. *Radiation Measurements* 47: 732–739, . CrossrefGoogle Scholar

Thomsen KJ, Murray AS, B⊘tter-Jensen L and Kinahan J, 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. *Radiation Measurements* 42(3): 370–379, . CrossrefGoogle Scholar

Thomsen KJ, Murray A and B⊘tter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. *Radiation Measurements* 39: 47–61, . CrossrefGoogle Scholar

Thomsen KJ, Jain M, B⊘tter-Jensen L, Murray AS and Jungner H, 2003. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block. *Radiation Measurements* 37: 315–321, . CrossrefGoogle Scholar

Urbanová P, Hourcade D, Ney C and Guibert P, 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre *Palais-Gallien* in Bordeaux. *Radiation Measurements* 72: 100–110, . CrossrefGoogle Scholar

Urbanová P, Delaval E, Dufresne P, Lanos P and Guibert P, 2016. Multi-method dating comparison of Grimaldi castle foundations in Antibes, France. *ArchéoSciences - Revue d’archéométrie*, 40: 17–33. Google Scholar

Urbanová P and Guibert P, 2017. La mesure du temps par luminescence: datation de réemplois dans la crypte de Saint Seurin à Bordeaux. Dossier «Atelier doctoral. Les remplois en architecture entre Antiquité et Moyen Âge» of *Mélanges de l’Ecole française de Rome*. (Measurement of time by luminescence: dating of spolia in the crypt of Saint Seurin, Bordeaux. Dossier «Doctoral atelier. Reuse in architecture between Antiquity and Middle Ages» of Mélanges de l’École française de Rome). 129, 1. (in French). Google Scholar

Wagner GA, Glasmacher UA and Greilich S, 2005. Spatially resolved dose-rate determination in rocks and ceramics by neutron-induced fission tracks: fundamentals. *Radiation Measurements* 40: 26–31, . CrossrefGoogle Scholar

Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. *Radiation Measurements* 41(4): 369–391, . CrossrefGoogle Scholar

Zacharias N, Mauz B and Michael CT, 2002. Luminescence quartz dating of lime mortars. A first research approach. *Radiation Protection Dosimetry* 101: 379–382. CrossrefGoogle Scholar

## Comments (0)