Jump to ContentJump to Main Navigation
Show Summary Details

Clinopyroxene phenocrysts from the Księginki nephelinite (SW Poland)

Marcin Goleń
  • Institute of Geological Sciences, University of Wrocław, pl. Maksa Borna 9, 50-204 Wrocław, Poland
/ Jacek Puziewicz
  • Institute of Geological Sciences, University of Wrocław, pl. Maksa Borna 9, 50-204 Wrocław, Poland
/ Magdalena Matusiak-Małek
  • Institute of Geological Sciences, University of Wrocław, pl. Maksa Borna 9, 50-204 Wrocław, Poland
/ Theodoros Ntaflos
  • Department of Lithospheric Research, University of Vienna, Althanstraße 14, 1090 Wien, Austria
Published Online: 2016-04-11 | DOI: https://doi.org/10.1515/georec-2015-0001

Abstract

The Eocene nephelinite from Księginki quarry (SW Poland) contains five types of clinopyroxene phenocrysts varying by texture and chemical composition. Type I phenocrysts are formed of Mg-rich (mg# = 0.93–0.88) homogenous cores, patchy mantle and zoned rims. Abundant type II is less magnesian (mg# = 0.65–0.88) and consists of spongy or spongy-patchy core surrounded by zoned rims, whilst in type III (mg# = 0.69–0.84), the cores are massive but patchy. The mg# of cores of type IV phenocrysts is slightly lower than that of type I (0.79–0.89), but its cores are either massive or patchy. Type V is very scarce and consist of relatively Mg-poor (mg# = 0.75–0.77) core enveloped by nonpatchy, sometimes zoned mantle and zoned outer rim. Chemical composition of type I and type IV cores suggests that they are xenocrysts introduced into the nephelinite from disintegrated peridotite and clinopyroxenitic xenoliths, respectively. Type V is also of xenocrystic nature, but its source rock was significantly more evolved than mantlederived ones. Types II and III are possibly cognates from the host nephelinite or a melt related to the nephelinite. All the types of phenocrysts suffered from disequilibrium with the nephelinitic (or proto-nephelinitic) melt or dissolution during adiabatic uplift. Linear variation in chemical composition of phenocrysts of Księginki nephelinite suggests its evolution because of fractional crystallisation, without significant influence of other differentiation processes.

Keywords: nephelinite evolution; clinopyroxene phenocrysts; Księginki; Central European Volcanic Province

References

  • [1] Aleksandrowski P., Badura J. 2013. On the northern termination of the Eger (Ohře) Graben. Basalt 2013: Cenozoic Magmatism in Central Europe (conference materials): 70–71. Google Scholar

  • [2] Bultitude R.J., Green D.H. 1971. Experimental study of crystal-liquid relationships at high pressures in olivine nephelinite and basanite compositions. J. Petrol., 12: 121–147. CrossrefGoogle Scholar

  • [3] Berezowski Z. 1956. Szczegółowa mapa geologiczna Sudetów, 1:25,000, arkusz Lubań Śląski. (In Polish). Instytut Geologiczny, Warszawa. Google Scholar

  • [4] Białowolska A. 1980. Geochemiczna charakterystyka niektórych bazaltoidów Dolnego Śląska i ich ultramafitowych enklaw (Geochemical features of some Lower Silesian basaltoids and their ultramafic inclusions). Archiwum Mineralogiczne, 36: 107-163. Google Scholar

  • [5] Birkenmajer K., Pécskay Z., Grabowski J., Lorenc M.W., Zagożdżon P.P. 2011. Radiometric dating of the tertiary volcanics in Lower Silesia, Poland. VI. K-Ar and paleomagnetic data from basaltic rocks of the West Sudety Mountains and their northern foreland. Ann. Soc. Geol. Pol., 81: 115–131. Google Scholar

  • [6] Brey G.P., Köhler T. 1990. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol., 31, 6: 1353–1378. CrossrefGoogle Scholar

  • [7] Cajz V., Valečka J. 2010. Tectonic settings of the Ohře/Eger Grabem between the central part of the České středohoří Mts. And the Most basin, a regional study. J. Geosci., 55: 201–215. Google Scholar

  • [8] Dobosi G., Schultz-Giittler R., Kurat G., Kracher A. 1991. Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria. Mineral. Petr., 43: 275–292. Google Scholar

  • [9] Downes H. 2001. Formation and modification of the shallow subcontinental lithospheric mantle: a review of geochemical evidence from ultramafic xenoliths suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J. Petrol., 42: 233–250. Google Scholar

  • [10] Downes H., Reichow M.K., Mason P.R.D., Beard A.D., Thirwall M.F. 2003. Mantle domains in the lithosphere beneath the French Massif Central: trace elements and isotopic evidence from mantle clinopyroxenes. Chem. Geol., 200: 71–87. Google Scholar

  • [11] Hibbard M.J., Sjoberg J.J. 1994. Signs of incongruent melting of clinopyroxene in limburgite, Thetford Hill, Vermont. Can. Mineral, 32: 307–317. Google Scholar

  • [12] Kozłowska-Koch M. 1981. Petrography of ultramafic nodules in the nephelinites from Księginki near Lubań (Lower Silesia). Archiwum Mineralogiczne, 38, 1: 33–56. Google Scholar

  • [13] Kozłowski S., Parachoniak W. 1960. The products of basalts weathering in the region of Lubań in Lower Silesia. Acta. Geol. Pol., 10, 2: 285–318 (in Polish, French abstr.). Google Scholar

  • [14] Ladenberger A., Peate, D.A., Tomek C., Michalik M. 2004. Isotopic characteristic of volcanic rocks from southwestern Poland and neighbouring areas in Czech Republic and Germany. Pol. Tow. Miner. Prace Spec., 24: 263–266. Google Scholar

  • [15] Le Maitre R.W. (Ed.), Streckeisen A., Zanettin B., Le Bas M.J., Bonin B., Bateman P., Bellieni G., Dudek A., Efremova S., Keller J., Lameyre J., Sabine P.A., Schmid R., Sørensen H., Woolley A.R. 2002. Igneous Rocks: A classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks, Cambridge University Press, United Kingdom: 254. Google Scholar

  • [16] Morse S.A. 1980. Basalts and Phase diagrams. An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology, Springer- Verlag, USA: 493. Google Scholar

  • [17] Neumann E.-R., Wulff-Pedersen E., Simonsen S.L., Pearson N.J., Marti J., Mitjavila J. 1999. Evidence for fractional crystallization of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol., 40, 7: 1089–1123. CrossrefGoogle Scholar

  • [18] Puziewicz J., Koepke J., Grégoire M., Ntaflos T., Matusiak-Małek M. 2011. Cenozoic rifting in central europe: Evidence from the Księginki nephelinite (SW Poland) xenolith suite. J. Petrol., 52: 2107–2145. Google Scholar

  • [19] Shaw C.S.J. 2004. The temporal evolution of three magmatic systems in the West Eifel volcanic field, Germany. J. Volcanol. Geotherm. Res., 131: 213–240. Google Scholar

  • [20] Streck M.J. 2008. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem., 69: 595–622. Web of ScienceGoogle Scholar

  • [21] Ulrych J., Dostal J., Adamovič J., Jelínek E., Špaček P., Hegner E., Balogh K. 2011. Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos, 123: 133–144. Web of ScienceGoogle Scholar

  • [22] Wimmenauer W. 1974. The Alkaline Province of Central Europe and France. Google Scholar

  • [in:] Sørensen H. (ed.) The Alkaline Rocks, 286–291, Wiley & Sons, London. Google Scholar

About the article

Published Online: 2016-04-11

Published in Print: 2015-12-01


Citation Information: Geoscience Records, ISSN (Online) 2299-6923, DOI: https://doi.org/10.1515/georec-2015-0001.

Export Citation

© . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in