Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

2 Issues per year

Open Access
See all formats and pricing
More options …

Anti-predator adaptations in a great scallop (Pecten maximus) – a palaeontological perspective

Krzysztof Roman Brom
  • Department of Paleontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia in Katowice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Szopa
  • Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia in Katowice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Krzykawski
  • Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia in Katowice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Brachaniec
  • Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia in Katowice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Andrzej Salamon
  • Department of Paleontology and Stratigraphy, Faculty of Earth Sciences, University of Silesia in Katowice
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-11 | DOI: https://doi.org/10.1515/georec-2015-0002


Shelly fauna was exposed to increased pressure exerted by shell-crushing durophagous predators during the so-called Mesozoic Marine Revolution that was initiated in the Triassic. As a result of evolutionary ‘arms race’, prey animals such as bivalves, developed many adaptations to reduce predation pressure (e.g. they changed lifestyle and shell morphology in order to increase their mechanical strength). For instance, it was suggested that Pectinidae had acquired the ability to actively swim to avoid predator attack during the early Mesozoic. However, pectinids are also know to have a specific shell microstructure that may effectively protect them against predators. For instance, we highlight that the shells of some recent pectinid species (e.g. Pecten maximus) that display cross-lamellar structures in the middle part playing a significant role in the energy dissipation, improve the mechanical strength. In contrast, the outer layers of these bivalves are highly porous, which allow them to swim more efficiently by reducing the shell weight. Pectinids are thus perfect examples of animals optimising their skeletons for several functions. We suggest that such an optimisation of their skeletons for multiple functions likely occurred as a results of increased predation pressure during the so-called Mesozoic Marine Revolution.

Keywords: Pecten maximus; shell; microstructure; adaptation; predation.


  • [1] Ansell A.D. 1969. Leaping movements in the Bivalvia. J. Mollus. Stud., 38, 5: 387–399. Google Scholar

  • [2] Baird R.H. 1958. On the swimming behavior of escallops (Pecten maximus L.). Proceedings of the Malacological Society of London, 33: 67–61. Google Scholar

  • [3] Barber V.C., Evans E.M., Land M.F. 1967. The fine structure of the eye of the mollusk Pecten maximus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 76, 3: 295–312. Google Scholar

  • [4] Barthelat F., Rim J.E., Espinosa H.D. 2009. A Review on the Structure and Mechanical Properties of Mollusk Shells. Perspectives on Synthetic Biomimetic Materials. [in:] B. Bhushan, H. Fuchs (eds.) Applied Scanning Probe Methods XIII, Biomimetics and Industrial Applications, 17–44, Springer. Google Scholar

  • [5] Bengtson S., Morris S.C. 1992. Early Radiation of Biomineralizing Phyla. [in:] J.H. Lipps, P.W. Signor (eds.) Origin and Early Evolution of the Metazoa, 447–481, Plenum Press, New York. Google Scholar

  • [6] Chauvaud L., Lorrain A., Dunbar R.B., Paulet Y.M., Thouzeau G., Jean F., Guarini J.M., Mucciarone D. 2005. Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochemistry Geophysics Geosystems, 6, 8, doi: 10.1029/2004GC000890. CrossrefGoogle Scholar

  • [7] Chavan A. 1969. Lucinacea. [in:] Moore R.C. (ed.) Treatise on Invertebrate Paleontology, 491–517, New York. Google Scholar

  • [8] Cuif J.P., Dauphin Y. 1996. Occurrence of mineralization disturbances in nacreous layers of cultivated pearls produced by Pinctada margaritifera var. cumingi from French Polynesia. Comparison with reported shell alterations. Aquatic Living Resources, 9: 187–193. CrossrefGoogle Scholar

  • [9] Dyduch-Falinowska A., Piechocki A. 1993. Muszla. [in:] A. Dyduch- Falinowska, A. Piechocki (eds.) Mięczaki (Mollusca) - Małże (Bivalvia), 29–33, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [10] Espinosa H.D., Juster A.L., Latourte F.J., Loh O.Y., Gregoire D., Zavattieri P.D. 2010. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2: 173, doi:10.1038/ncomms1172. CrossrefWeb of ScienceGoogle Scholar

  • [11] Futuyma D.J. 2008. Koewolucja: rozwijanie interakcji międzygatunkowych. [in:] D.J. Futuyma (ed.) Ewolucja, 437–456, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. Google Scholar

  • [12] Grefsrud E.S., Dauphin Y., Cuif J.P., Denis A., Strand Ø. 2008. Modifications in microstructure of cultured and wild scallop shells (Pecten maximus). Journal of shellfish research, 27, 4: 633–641. Web of ScienceGoogle Scholar

  • [13] Harper E.M., Skelton P.W. 1993. The Marine Mesozoic Revolution and epifaunal bivalves. Scripta Geologica, special issue 2: 127–153. Google Scholar

  • [14] Hautmann M. 2004. Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution”. Lethaia, 37: 165–172. CrossrefGoogle Scholar

  • [15] Hautmann M. 2010. The first scallop. Paläontologische Zeitschrift, 84, 2: 317–322. Web of ScienceGoogle Scholar

  • [16] Hayami I. 1991. Living and fossil scallop shells as airfoils: an experimental study. Paleobiology., 17: 1–18. Google Scholar

  • [17] Jackson D.J., McDougall C., Woodcroft B., Moase P., Rose R.A., Kube M., Reinhardt R., Rokhsar D.S., Montagnani C., Joubert C., Piquemal D., Degnan B.M. 2010. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, 27, 3: 591–608. Google Scholar

  • [18] Jura C. 2005. Gromada: Małże - Bivalvia. [in:] C. Jura (ed.) Bezkręgowce – Podstawy Morfologii Funkcjonalnej, Systematyki i Filogenezy, 673– 686, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [19] Katti K.S., Katti D.R., Mohanty B. 2010. Biomimetic Lessons Learnt from Nacre. [in:] A. Mukherjee (ed.) Biomimetics Learning from Nature, 193-216, Tech Rijeka. Google Scholar

  • [20] Kosnik M.A., Alroy J., Behrensmeyer A.K., Fürsich F.T., Gastaldo R.A., Kidwell S.M., Kowalewski M., Plotnick R.M., Rogers R.R., Wagner P.J. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology, 37, 2: 303–331. Web of ScienceCrossrefGoogle Scholar

  • [21] Krebs C.J. 2011. Ewolucja i „wyścig zbrojeń”. [in:] C.J. Krebs (ed.) Ekologia - Eksperymentalna Analiza Rozmieszczenia i Liczebności, 27–28, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [22] Meyers M.A., Chen P.Y., Lopez M.I., Seki Y., Lin A.Y.M. 2011. Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 4, 5: 626–657. Google Scholar

  • [23] Meyers M.A., Yu-Min L.A., Chen P.Y., Muyco J. 2008. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behavior of Biomedical Materials, 1, 1: 75–85. Google Scholar

  • [24] Piechocki A. 2009. Gromada: Małże - Bivalvia. [in:] C. Błaszak (ed.) Zoologia – Bezkręgowce Tom I, 508–552, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [25] Pokryszko B. 2009. Podtyp: Muszlowce - Conchifera. [in:] Błaszak C. (ed.) Zoologia - Bezkręgowce Tom I, 425–426, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [26] Popov S.V. 1986. Composite prismatic structure in bivalve shell. Acta Palaeontologica Polonica, 31, 1–2: 3–28. Google Scholar

  • [27] Ragaini L., Di Celma C. 2009. Shell structure, taphonomy and mode of life of a Pleistocene ostreid from Ecuador. Bollettino della Società Paleontologica Italiana, 48, 2: 79–87. Google Scholar

  • [28] Raup D.M., Stanley S.M. 1984. Ekosystem morski. [in:] D.M. Raup, S.M. Stanley (ed.) Podstawy Paleontologii, 270–275, Państwowe Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [29] Salamon M.A., Niedźwiedzki R., Gorzelak P.,Lach R.,Surmik D. 2012. Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic Marine Revolution. Palaeogeography, Palaeoclimatology, Palaeocology, 321-322: 142–150. Web of ScienceGoogle Scholar

  • [30] Salinas C., Kisailus D. 2013. Fracture mitigation strategies in gastropod shells. JOM, 65, 4: 474–480. CrossrefWeb of ScienceGoogle Scholar

  • [31] Tackett L.S., Bottjer D.J. 2012. Faunal succession of Norian (Late Triassic) level-bottom benthos in the Lombardian Basin: implications for the timing, rate, and nature of the Early Mesozoic Marine Revolution. PALAIOS, 27: 585–593. CrossrefWeb of ScienceGoogle Scholar

  • [32] Taylor J.D., Kennedy W.J., Hall A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea - Trigoniacea. Bulletin of the British Museum (Natural History). Zoology, Supplement, 3: 1–125. Google Scholar

  • [33] Urbański J. 1989. Gromada: Bivalvia (Lamellibranchiata, Acephala, Pelecypoda) - małże (blaszkoskrzelne). [in:] E. Grabda (ed.) Zoologia - Bezkręgowce Tom I Część trzecia, 805–851, Wydawnictwo Naukowe PWN, Warszawa. Google Scholar

  • [34] Vendrasco M.J., Porter S.M., Kouchinsky A.V., Li G., Fernandez C.Z. 2010. Shell microstructures in early Mollusks. The Festivus, XLII, 4: 43–54. Google Scholar

  • [35] Vermeij G.J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology, 3: 245–258. Google Scholar

  • [36] Vermeij G.J. 1987. Evolution and Escalation. An Ecological History of Life, 1–527. Princeton University Press, Princeton. Google Scholar

  • [37] Yang W., Kashani N., Li X.W., Zhang G.P., Meyers M.A. 2011a. Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Materials Science and Engineering: C, 31: 724–729. CrossrefGoogle Scholar

  • [38] Yang W., Zhang G.P., Liu H., Li X.W. 2011b. Microstructural characterization and hardness behavior of a biological Saxidomus purpuratus Shell. Journal of Materials Science & Technology, 27, 2: 139–146. Web of ScienceGoogle Scholar

  • [39] Yang W., Zhang G.P., Zhu X.F., Li X.W., Meyers M.A. 2011c. Structure and mechanical properties of Saxidomus purpuratus biological shells. Journal of the Mechanical Behavior of Biomedical Materials, 4: 1514– 1530. Google Scholar

About the article

Published Online: 2016-04-11

Published in Print: 2015-12-01

Citation Information: Geoscience Records, Volume 1, Issue 1-2, Pages 16–20, ISSN (Online) 2299-6923, DOI: https://doi.org/10.1515/georec-2015-0002.

Export Citation

© . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in