Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

2 Issues per year

Open Access
Online
ISSN
2299-6923
See all formats and pricing
More options …

Mineralogy and technology of bricks used for the construction of the XII century ducal castle on the island of Ostrów Tumski, Wrocław (SW Poland)

W. Bartz / M. Chorowska
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/georec-2016-0002

Abstract

The historic bricks from the ducal castle on Ostrów Tumski (Wrocław), one of the first brickwork structures in the Lower Silesia, which dates back to the XII and XIII century, were studied and characterised by a combination of classical petrographic studies (polarising microscopy), scanning microscopy, thermal analysis and X-ray diffraction. The combined results of these methods suggest that the firing temperature ranges from 950°C, through the most common temperatures of 850–900°C, to the infrequent temperatures below 750°C. Most of the bricks were fired under oxidising conditions, occasionally over a sequence of oxidising and reducing steps, resulting in a sandwich structure. The results indicate, that low-calcareous raw materials were used, presumably Miocene-Pliocene ‘flamy clays’, exploited a few kilometres away from the castle and tempered with locally obtained sand from the Odra river. Only small differences have been recognized in: 1) clay to aplastic material ratio, 2) amount of accessory minerals, 3) grain-size distribution of aplastic materials, but no significant changes in the brick technology were observed. The observed variability corresponds well to the different constructing phases, identified previously on the basis of archaeological work. Thus, our work proves that a detailed mineralogical and petrological study may help to identify different construction phases in historic monuments.

Keywords: applied mineralogy; historic bricks; firing technology; castle; Ostrów Tumski

References

  • [1] Barluenga G., Estirado F., Undurraga R., Conde J.F., Agua F., Villegas M. Á., García-Heras M. 2014. Brick masonry identification in a complex historic building, the Main College of the University of Alcalá, Madrid (Spain). Constr. Build. Mater., 54: 39–46.CrossrefGoogle Scholar

  • [2] Caban M. 2015. ‘Porównawcze badania pomiarowe cegieł z kościoła Salwatora we Wrocławiu’ [in:] Wachowski, K. (ed.) Cmentarz Salwatora: pierwsza nekropolia wrocławskich protestantów, Wratislavia Antiqua: studia z dziejów Wrocławia/Zespół do Badań Średniowiecznego i Nowożytnego Wrocławia, 21, 197–213, Uniwersytet Wrocławski, Instytut Archeologii, Wrocław.Google Scholar

  • [3] Cardiano P., Ioppolo S., De Stefano C., Pettignano A., Sergi S., Piraino, P. 2004. Study and characterization of the ancient bricks of monastery of “San Filippo di Fragalà” in Frazzanò (Sicily). Anal. Chim. Acta., 519: 103–111.Google Scholar

  • [4] Choma-Moryl K. 1988. Variability of physical properties of the Poznań Clays (Neogene) from the area of Wroclaw, with reference to their genesis and Lithostratigraphy. Geologia Sudetica, XXIII (1): 1–63.Google Scholar

  • [5] Cultrone G., Sidraba I., Sebastián E. 2005. Mineralogical and physical characterization of the bricks used in the construction of the “Triangul Bastion”, Riga (Latvia). Appl. Clay. Sci., 28: 297–308.CrossrefGoogle Scholar

  • [6] Földvári M. 2011. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, Geological Institute of Hungary, Budapest.Google Scholar

  • [7] Goldsztejn J. 2009. Baza danych geologiczno-inżynierskich wraz z opracowaniem atlasu geologiczno-inżynierskiego aglomeracji wrocławskiej, [w] https://www.mos.gov.pl/g2/big/2009_09/a8a2d170e5086c8c2b2b8fc705d9d161.pdf (accessed: 11.11.2015).

  • [8] Gredmaier L., Banks C.J., Pearce R.B. 2011. Calcium and sulphur distribution in fired clay brick in the presence of a black reduction core using micro X-ray fluorescence mapping. Constr. Build. Mater., 25: 4477–4486.CrossrefWeb of ScienceGoogle Scholar

  • [9] Grzybkowski A. 1994. O wrocławskich kaplicach zamkowych. Kwartalnik Architektury i Urbanistyki, 49 (3): 221–230.Google Scholar

  • [10] İssi A., Kara A., Alp A.O. 2011. An investigation of Hellenistic period pottery production technology from Harabebezikan/Turkey. Ceram. Int., 37: 2575–2582.Web of ScienceCrossrefGoogle Scholar

  • [11] Kłapciński J. 1993. Litostratygrafia profili głębokich otworów wiertniczych w regionie opolskim, Acta Universitatis Wratislaviensis. Prace Geologiczno-Mineralogiczne 37. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.Google Scholar

  • [12] Kraner H.M. 1970. The Use of Phase Diagrams in the Development and Use of Refractories. [in:] Alper A.M. (ed.) Phase Diagrams, 67–115, Academic Press, New York.Google Scholar

  • [13] López-Arce P., Garcia-Guinea J., Gracia M., Obis J. 2003. Bricks in historical buildings of Toledo City: characterisation and restoration. Mater. Charact., 50: 59–68.CrossrefGoogle Scholar

  • [14] Małachowicz E. 1994. Wrocławski zamek książęcy i kolegiata św. Krzyża na Ostrowie, Wydawnictwo Politechniki Wrocławskiej, Wrocław.Google Scholar

  • [15] Małachowicz E., Lasota C. 1989. Opactwo Św. Marcina na zamku wrocławskim na Ostrowie. Kwartalnik Architektury i Urbanistyki : teoria i historia, 34 (1–2): 3–18.Google Scholar

  • [16] Manoharan C., Sutharsan P., Dhanapandian S., Venkatachalapathy R., Asanulla R.M. 2011. Analysis of temperature effect on ceramic brick production from alluvial deposits, Tamilnadu, India. Appl. Clay Sci., 54: 20–25.CrossrefWeb of ScienceGoogle Scholar

  • [17] Maritan L., Nodari L., Mazzoli C., Milano A., Russo U. 2006. Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Appl. Clay. Sci., 31: 1–15.CrossrefGoogle Scholar

  • [18] Molera J., Pradell T., Vendrell-Saz M. 1998. The colours of Ca-rich ceramic pastes: origin and characterization. Appl. Clay. Sci., 13: 187–202.CrossrefGoogle Scholar

  • [19] Moropoulou A., Bakolas A., Bisbikou K. 1995. Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochim. Acta., 269–270: 743–753.Google Scholar

  • [20] Özkaya Ö., Böke H. 2009. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon. Mater. Charact., 60: 995–1000.Palanivel R., Kumar U.R. 2011. Thermal and spectroscopic analysis of ancient potteries. Rom. J. Phys., 56 (1–2): 195–208.CrossrefGoogle Scholar

  • [21] Rathossi C., Tsolis-Katagas P., Katagas C. 2004. Technology and composition of Roman pottery in northwestern Peloponnese, Greece. Appl. Clay. Sci., 24: 313–326.CrossrefGoogle Scholar

  • [22] Roduit N. 2007. JMicroVision: un logiciel d’analyse d’images pétrographiques polyvalent. http://www.jmicrovision.com (on-line, accessed: 03 February 2015).

  • [23] Sağın E., Böke H. 2013. Characteristics of bricks used in the domes of some historic bath buildings. J. Cult. Herit., 14 (3): e73–e76.Web of ScienceCrossrefGoogle Scholar

  • [24] Scalenghe R., Barello F., Saiano F., Ferrara E., Fontaine C., Caner L., Olivetti E., Boni I., Petit S. 2015. Material sources of the Roman brick-making industry in the I and II century A.D. from Regio IX, Regio XI and Alpes Cottiae. Quat. Int., 357: 189–206.Web of ScienceGoogle Scholar

  • [25] Żurek A. 1996. Wrocławska kaplica św. Marcina w średniowieczu, Uniwersytet Wrocławski, Centrum Badań Śląskoznawczych i Bohemistycznych, Wrocław.Google Scholar

About the article

Received: 2015-10-30

Accepted: 2015-12-10

Published Online: 2016-11-23

Published in Print: 2016-12-01


Citation Information: Geoscience Records, Volume 2, Issue 1, Pages 4–16, ISSN (Online) 2299-6923, DOI: https://doi.org/10.1515/georec-2016-0002.

Export Citation

© 2016 W. Bartz et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in