Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

2 Issues per year

Open Access
See all formats and pricing
More options …

Carbon, Nitrogen and Sulphur concentration and δ13C, δ15N values in Hypogymnia physodes within the montane area – preliminary data

Monika Ciężka / Maria Kossowska
  • Department of Biodiversity and Plant Cover, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Paneth / Maciej Górka
  • Institute of Geological Sciences, University of Wroclaw, Cybulskiego Street 32, 50-205 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-23 | DOI: https://doi.org/10.1515/georec-2016-0004


The contribution of C, N and S, as well as the isotopic composition of C and N of atmospheric pollutants, are assumed to be reflected in the organic compounds inbuilt into the lichen thallus. The chemical and isotopic analyses were carried out on lichen Hypogymnia physodes samples gathered from Picea abies and Larix decidua, collected in 13 sampling points located in Karkonoski National Park and its closest vicinity in 2011. The results for %C, %N and %S varied from 43.44 to 46.79%, from 0.86 to 1.85% and from 0.07 to 0.27 %, respectively. The δ13C values ranged from −26.6 to −24.6‰, whereas δ15N values varied from −13.0 to −6.8‰. The ranges in isotope composition suggest different sources of C and N for Karpacz compared to the remaining sampling sites. For Karpacz, the δ13C values suggest (in case the fractionation product-substrate does not exist and Δ=0) that the dominant sources are coal combustion processes, whereas for remaining sampling points, the δ13C values are ambiguous and are masked by many mixed natural and anthropogenic processes. With the same assumption that Δ=0, the δ15N values suggest that transport is not a dominant source of nitrogen within Karpacz city. Moreover, in this study we tested the possible fractionation (Δ) for carbon and nitrogen, assuming that within the investigated area, the source of carbon is probably CO2 and/or DIC (HCO3) dissolved in precipitation, while the source of nitrogen is NOx and/or NO3 ion. The calculated fractionation factors were: (i) for gaseous carbon compounds ΔCO2-Corg value from −13.4 to −11.4‰, whereas for the ions form ΔHCO3-Corg value from −16.6 to −14.6‰, (ii) for nitrogen gaseous compounds ΔNOx-Norg value between apx. −17 and −5‰, whereas for the ions form ΔNO3-Norg value between −9.9 and −3.7‰.

Keywords: Hypogymnia physodes; Karkonosze Mountains; CNS concentration; δ13C; δ15N


  • [1] Ahmadjian, V. 1993. The Lichen Symbiosis. John Wiley & Sons.Google Scholar

  • [2] Beck, A., Mayr, C. 2012. Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont–photobiont interactions. Ecol. Evol., 2(12): 3132–3144.CrossrefGoogle Scholar

  • [3] Berlizov, A.N., Blum, O.B., Filby, R.H., Malyuk, I.A., Tryshyn, V.V. 2007. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci. Total Environ., 372: 693–706.Google Scholar

  • [4] Biazrov, L.G. 2012a. Stable Nitrogen Isotopes (δ15N) in Thalli of the Lichen Hypogymnia physodes along a Altitudinal Gradient in the Khangai Plateau, Mongolia. Russ. J. Ecol., 43(3): 185–190.CrossrefGoogle Scholar

  • [5] Biazrov, L.G. 2012b. Values of Stable Carbon Isotopes (δ13C) in the Thalli of the Arid Vagrant Lichen Xanthoparmelia camtschadalis along an Altitudinal Gradient in the Khangai Plateau as a Reflection of the Spatial and Ecological Heterogeneity of the Semiarid Region of Mongolia. Arid Ecosystems, 2(1): 54–60.Google Scholar

  • [6] Boltersdorf S.H., Werner, W. 2014. Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature. Environ. Monit. Assess., 186: 4767–4778.CrossrefGoogle Scholar

  • [7] Bonanno, G. 2013. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy. Environ. Monit. Assess., 185: 8115–8123.Google Scholar

  • [8] Bosch-Roig, P., Barca D., Crisci, G.M., Lalli, C. 2013. Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J. Atmos. Chem., 70: 373–388.CrossrefGoogle Scholar

  • [9] Bruteig, I. E. 1992. The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environ. Monit. Assess.t, 26(1): 27–47.CrossrefGoogle Scholar

  • [10] Carballeira, A., Fernándèz, J.A. 2002. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant. A geotopographical predictive model for mercury. Chemosphere, 47: 1041–1048.CrossrefGoogle Scholar

  • [11] Cekstere, G., Laivins, M., Osvalde A. 2015. Chemical Composition of Scots Pine Bark as a Bioindicator of Environmental Quality in Riga, Latvia. Proceedings Of The Latvian Academy Of Sciences. Section B, Vol. 69, No. 3 (696): 87–97.Google Scholar

  • [12] Ciężka, M., Tyszka, R., Łubek, A., Lewińska, A., Jezierski, A., Widory, D., Górka, M. 2016. Influence of the atmospheric gaseous pollutants (SO2, NO2) on heavy metals and free radicals concentration in lichen Hypogymnia physodes: Świętokrzyski National Park case study. Conference abstract, in press.Google Scholar

  • [13] Conti, M.E., Cecchetti G. 2001. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ. Pollut., 114: 471–492.CrossrefGoogle Scholar

  • [14] Cowden, P., Liang, T., Aherne J. 2015. Mosses as bioindicators of air pollution along an urban-agricultural transect in the Credit River Watershed, southern Ontario, Canada. Annali Di Botanica, 5: 39–46.Google Scholar

  • [15] Cuna, S., Balas, G., Hauer, E. 2007. Effects of natural environmental factors on δ13C of lichens. Isot. Environ. Health Stud., 43(2): 95–104.CrossrefGoogle Scholar

  • [16] Dahlman, L., Persson, J., Palmqvist, K., Näsholm, T. 2004. Organic and inorganic nitrogen uptake in lichens. Planta, 219: 459–467.Google Scholar

  • [17] Felix, J.D., Elliott, E.M., Gish, T.J., McConnell, L.L., Shaw, S.L. 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun. Mass Spectrom., 27: 2239–2246.Google Scholar

  • [18] Fernándèz, J.A., Rey, A., Carballeira, A., 2000. Differences in the responses of native and transplanted mosses to atmospheric pollution: a possible role of selenium. Environ. Pollut., 110: 73–78.CrossrefGoogle Scholar

  • [19] Freyer, H.D. 1978. Seasonal trends of NH4+ and NO3 nitrogen isotope composition in rain collected at Juelich, Germany. Tellus, 30: 83–92.Google Scholar

  • [20] Freyer, H.D., 1991. Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus, 43B: 30-44.Google Scholar

  • [21] Fuentes, J.M.C., Rowe, J.G., 1998. The effect of air pollution from nitrogen dioxide (NO2) on epiphytic lichens in Seville, Spain. Aerobiologia, 14(2): 241–247.CrossrefGoogle Scholar

  • [22] Galsomies, L., Letrouit, M.A., Deschamps, C., Savanne, D., Avnaim, M., 1999. Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring. Sci. Total Environ., 232: 39–47.Google Scholar

  • [23] Gałuszka, A. 2005. The chemistry of soils, rocks and plant bioindicators in three ecosystems of the holy cross mountains, Poland. Environ. Monit. Assess., 110: 55–70.CrossrefGoogle Scholar

  • [24] Gerdol, R., Bragazza, L., Marchesini, R., Alber, R., Bonetti, L., Lorenzoni, G., Achilli, M., Buffoni, A., DeMarco, N., Franchi, M., Pison, S., Giaquinta, S., Palmieri, F., Spezzanto, P. 2000. Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ. Pollut., 108: 201–208.CrossrefGoogle Scholar

  • [25] Gombert, S., Asta, J., Seaward, M.R.D. 2003. Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ. Pollut., 123: 281–290.Google Scholar

  • [26] Gorshghov, A.G., Mikhailova, T.A., Berezhnaya, N.S., Vereshchagina A.L. 2008. Needle of Scotch Pine (Pinus sylvestris L.) as a Bioindicator for Atmospheric Pollution with Polycyclic Aromatic Hydrocarbons. Chemistry for Sustainable Development, 16: 155–162.Google Scholar

  • [27] Hauck, M. 2010. Ammonium and nitrate tolerance in lichens. Environ. Pollut., 158: 1127–1133.Google Scholar

  • [28] Heaton, T. H. E. 1987. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmos. Environm., 21: 843–852.CrossrefGoogle Scholar

  • [29] Górka, M., Sauer, P.E., Lewicka-Szczebak, D., Jędrysek, M. O. 2011. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2. Environ. Pollut., 159: 294–301.Google Scholar

  • [30] Jeran, Z., Mrak, T., Jaćimović, R., Batic, F., Kastelec, D., Masvar, R., Simoncic, P. 2007. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Environ. Pollut., 146: 324–331.CrossrefGoogle Scholar

  • [31] Jędrysek, M.O., Kalużny, A., Hoefs, J. 2002. Sulphur and oxygen isotope ratios in spruce needles as a tracer of atmospheric pollution. J. Geophys. Res.: Atmospheres, 107: 4353–4365.Google Scholar

  • [32] Jóźwiak, M. 2007. Kumulacja metali ciężkich i zmiany morfologiczne w plechach porostu Hypogymnia physodes (L.) Nyl. Monitoring Środowiska Przyrodniczego, 8: 51–56.Google Scholar

  • [33] Kłos, A. 2007. Porosty - biowskaźniki i biomonitory zanieczyszczenia powietrza. Chemia, Dydaktyka, Ekologia, Metrologia, 12: 61–77.Google Scholar

  • [34] Kosior, G., Ciężka, M., Górka, M., Samecka-Cymerman, A., Kolon, K., Kempers, A. J., Jędrysek M. O. 2015. δ34S values and S concentrations in native and transplanted Pleurozium schreberi in a heavily industrialised area. Ecotoxicol. Environ. Saf., 118: 112–117.CrossrefGoogle Scholar

  • [35] Kosior, G., Samecka-Cymerman, A., Chmielewski A., Wierzchnicki, R., Derda, M., Kempers A. J. 2008. Native and transplanted Pleurozium schreberi (Brid.)Mitt. as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmos. Environ., 42(6): 1310–1318.CrossrefGoogle Scholar

  • [36] Kossowska, M., Fałtynowicz, W., Dimos-Zych, M., 2014. Porosty wracają w Karkonosze – wstępne wyniki 2 etapów monitoringu lichenologicznego w Karkonoskim Parku Narodowym – In: Otte V. (red.), Tagung „Umwelt im Wandel – das schwarze Dreieck wird wieder bunt” Peckiana, 9: 45–48.Google Scholar

  • [37] Kwiatkowski, J., Hołdys, T. 1985. Klimat. – In: Jahn A. (ed.), Karkonosze polskie. Ossolineum, Wrocław, 85–116.Google Scholar

  • [38] Laxton, D.L., Watmough, S.A., Aherne, J., Straker, J. 2010. An assessment of nitrogen saturation in Pinus banksiana plots in the Athabasca Oil Sands Region, Alberta. J. Limnol., 69(1): 171–180.CrossrefGoogle Scholar

  • [39] LeBlanc, F., DeSloover, J. 1970. Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can. J. Bot., 48: 1485–1496.CrossrefGoogle Scholar

  • [40] Lippo, H., Poikolainen, J., Kubin, E. 1995. The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water Air Soil Pollut., 85 (4): 2241–2246.Google Scholar

  • [41] Maguas, C., Griffiths, H., Broadmeadow M.S.J. 1995. Gas exchange and carbon isotope discrimination in lichens: Evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta, 196: 95–102.Google Scholar

  • [42] Mandiwana, K.L., Resane, T., Panichev, N., Ngobeni, P., 2006. The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution. Journal of Hazardous Materials, B137: 1241–1245.Google Scholar

  • [43] Manninen, S., Huttunen S., Torvela, H. 1991. Needle and lichen sulphur analyses on two industrial gradients. Water Air Soil Pollut., 59: 153–163.Google Scholar

  • [44] Michener, R., Lajtha K. 2007. Stable Isotopes in Ecology and Environmental Science.Google Scholar

  • [45] Migaszewski, Z.M., Gałuszka, A., Świercz, A., Kucharczyk, J. 2001. Element concentrations in soils and plant bioindicators in selected habitats of the Holy Cross Mountains, Poland. Water Air Soil Pollut., 129: 369–386.Google Scholar

  • [46] Migaszewski, Z.M., Lamothe, P.J., Crock, J.G., Gałuszka, A., Dołęgowska S. 2011. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies. Environmental Chemistry Letters, 9: 323–329.Google Scholar

  • [47] Migaszewski, Z. M., Pasławski, P., Hałas, S., Durakiewicz. 1995. Wpływ pierwiastków śladowych i izotopów siarki na środowisko naturalne Gór Świętokrzyskich. Przegląd Geologiczny, 43(6): 472–477.Google Scholar

  • [48] Misra, M., Tandon, P.K. 2014. Heavy metal accumulation and chlorophyll content in moss samples collected from heavy traffic sites. Res. in Environ. Life Sci., 7 (2): 111–114.Google Scholar

  • [49] Moore, H., 1977. The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos. Environm., 11: 1239–1243.CrossrefGoogle Scholar

  • [50] Munzi, S., Ravera, S., Caneva, G. 2007. Epiphytic lichens as indicators of environmental quality in Rome. Environ. Pollut., 146: 350–358.CrossrefGoogle Scholar

  • [51] Poikolainen, J. 1997. Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula. Water Air Soil Pollut., 93: 395–408.Google Scholar

  • [52] Poikolainen, J., Lippo H., Hongisto, M., Kubin, E., Mikkola, K., Lindgrend, M. 1998. On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environ. Pollut., 102: 85–92.CrossrefGoogle Scholar

  • [53] Rautio, P., Huttunen, S. 2003. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient. Environ. Pollut., 122: 273–289.CrossrefGoogle Scholar

  • [54] Samecka-Cymerman, A., Kolon, K., Kempers, A. J. 2011. Taxus baccata as a bioindicator of urban environmental pollution. Pol. J. Environ. Stud., 20: 1021–1027.Google Scholar

  • [55] Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P. and Tsigaridas, K. 2011. Trees as bioindicator of heavy metal pollution in three european cities. Environ. Pollut., 159 3560–3570.Google Scholar

  • [56] Sawicka-Kapusta, K., Zakrzewska, M. 2009. Ocena zanieczyszczeń powietrza na podstawie zawartości siarki i metali ciężkich w porostach w roku 2009 - okazy naturalne. Raport o stanie środowiska przyrodniczego zlewni ZMŚP “Pożary” w 2009 roku.Google Scholar

  • [57] Sawicka-Kapusta, K., Zakrzewska, M., Bydłoń, G., Hajduk, J. 2010 Ocena zanieczyszczenia powietrza stacji bazowych ZMŚP metalami ciężkimi i dwutlenkiem siarki w latach 2001–2009 z wykorzystaniem porostu Hypogymnia physodes. Monitoring Środowiska Przyrodniczego, Kieleckie Towarzystwo Naukowe, 11: 63–71. [Air pollution of monitoring base stations ZMŚP with heavy metals and sulphur dioxide in 2001–2009 using Hypogymnia physodes lichens (in Polish)].Google Scholar

  • [58] Sobik, M., Błaś, M., Migała, K., Godek, M., Nasiółkowski, T. 2014. Klimat. – In: Knapik R. & Raj A. (eds.) Przyroda Karkonoskiego Parku Narodowego. Karkonoski Park Narodowy, Jelenia Góra, 147–186.Google Scholar

  • [59] Tonneijk, A.E.G., Posthumus, A. C. 1987. Use of indicator plants for biological monitoring of effects of air pollution: The Dutch approach. Verein Deutscher Ingenieure-Berichte, 609: 205–216.Google Scholar

  • [60] van Dobben, H. F., Wolterbeek, H.Th., Wamelink, G.W.W., Ter Braak, C.J.F. 2001. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ. Pollut., 112: 163–169.CrossrefGoogle Scholar

  • [61] Voivodeship Inspectorate for Environment Protection (VIEP) in Wrocław. 2011. Report on State of Environment in Lower Silesia in 2010 (available online: http://www.wroclaw.pios.gov.pl/index.php/publikacje/raporty-o-stanie-srodowiska/ 22.08.2016)

  • [62] Wadleigh, M. A. 2003. Lichens and atmospheric sulphur: what stable isotopes reveal. Environ. Pollut., 126: 345–351.Google Scholar

  • [63] Wadleigh, M. A., H. P. Schwarcz, J. R. Kramer. (1996). Isotopic evidence for the origin of sulphate in coastal rain. Tellus B, 48(1): 44–59.CrossrefGoogle Scholar

  • [64] Widory, D. 2006. Combustion, fuels and their combustion products (CO2 and particles): A view through carbon isotopes. Combust. Theor. Model, 10, 5: 831–841.Google Scholar

  • [65] Zechmeister, H.G., Hohenwallner, D., Riss, A., Hanus-Illnar, A. 2003. Variations in heavy metal concentrations in the moss species Abietinella abietina (Hedw.) Fleisch. according to sampling time, within site variability and increase in biomass. Sci. Total Environ., 301: 55–65.Google Scholar

About the article

Received: 2016-06-23

Accepted: 2016-08-27

Published Online: 2016-11-23

Published in Print: 2016-12-01

Citation Information: Geoscience Records, Volume 2, Issue 1, Pages 24–32, ISSN (Online) 2299-6923, DOI: https://doi.org/10.1515/georec-2016-0004.

Export Citation

© 2016 Monika Ciężka et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in