Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

2 Issues per year

Open Access
Online
ISSN
2299-6923
See all formats and pricing
More options …

Two-mica andalusite-bearing granite with no primary muscovite: constraints on the origin of post-magmatic muscovite in two-mica granites

Jacek Puziewicz
  • Corresponding author
  • Institute of Geological Sciences, University of Wrocław pl. M. Borna 9, 50-204 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Pietranik
  • Institute of Geological Sciences, University of Wrocław pl. M. Borna 9, 50-204 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-02-09 | DOI: https://doi.org/10.1515/georec-2016-0006

Abstract

The two-mica granite from Gęsiniec (Strzelin Granitic Massif, SW Poland) consists of quartz, K-feldspar, normally zoned plagioclase (30 ± 7 % An), subordinate biotite and muscovite and magmatic andalusite. Andalusite crystallised before the outer parts of plagioclase grains were formed. Biotite has constant Fe/(Fe + Mg) ratio of approximately 0.81. Five textural types of muscovite occur in the granite: (1) muscovite replacing andalusite, (2) embayed interstitial muscovite, (3) muscovite forming aggregates with biotite, (4) muscovite accompanying biotite and chlorite in microfissures and (5) fine muscovite forming fringes at the contact between larger muscovite plates and K-feldspar. They are commonly associated with albite.

Crystallisation of muscovite started significantly below the granite solidus, mostly by the replacement of andalusite. Formation of muscovite continued during cooling of host rock. The growth of individual plates was initiated at different undercoolings and the plates whose crystallisation was frozen at different stages of growth occur. Those that were formed earlier are richer in titanium and iron relative to the later ones. As the rock contains no Ti and Fe saturating phases, the content of Ti and Mg in muscovite depends on their local availability. The homogeneous Fe/(Fe + Mg) ratio of biotite indicates that it was re-equilibrated at the post-magmatic stage.

Keywords: Two-mica granite; magmatic andalusite; post-magmatic muscovite; titanium

References

  • [1] Bailey S.W. 1980. Summary and recommendation of AIPEA nomenclature committee on clay minerals. Amer. Miner., 65: 1-7.Google Scholar

  • [2] Chatterjee N., Johannes W. 1974. Thermal stability and standard thermodynamic properties of synthetic 2M1 muscovite KAl2[A1Si3O10(OH)2]. Contrib. Miner. Petrol., 48: 89-114.Google Scholar

  • [3] Bereś B. 1961. On the occurrence of andalusite in the granite of the Strzelin Massif. Zesz. Nauk. U. Wr., B6: 155-166.Google Scholar

  • [4] Chorlton L.B., Martin R.F. 1978. The effect of boron on the granite solidus. Can. Mineral., 16: 239-244.Google Scholar

  • [5] Clarke D.B., Dorais M., Barbarin B., Barker D., Cesare B., Clarke A., El Baghdadi M., Erdmann S., Forster H.-J., Gaeta M., Gottesmann B., Jamieson R.A., Kontak D.J., Koller F., Gomes C.L., London D., Morgan VI G.B., Neves L.J.P.F., Pattison D.R.M., Pereira A.J.S.C. Pichavant M., Rapela C.W., Renno A.D., Richards S., Roberts M., Rottura A., Saavedra J., Sial A.N., Toselli A.J., Ugidos J.M., Uher P., Villaseca C., Visona D., Whitney D.L., Williamson B., Woodard H.H. 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J. Petrol., 46: 441-472.CrossrefGoogle Scholar

  • [6] Holdaway M.J. 1971. Stability of andalusite in the aluminum silicate phase diagram. Am. J. Sci., 271: 97-131.Google Scholar

  • [7] Holtz F., Johannes W., Pichavant M. 1992. Effect of excess aluminium on phase relations in the system Qz-Ab-Or: experimental investigation at 2 kbar and reduced H2O activity. Eur. J. Mineral., 4: 137-152.CrossrefGoogle Scholar

  • [8] Joyce D.B., Voigt D.E. 1994. A phase equilibrium study in the system KAISi3O8-NaAlSi3O8-SiO2-Al2SiO5-H2O and petrogenetic implications. Am. Mineral., 79: 504-512.Google Scholar

  • [9] Kretz R. 1983. Symbols for rock-forming minerals. Am. Mineral., 68: 277-279.Google Scholar

  • [10] Manning D.A.C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Miner. Petrol., 76: 206-215.Google Scholar

  • [11] Miller C.F., Stoddard E.F., Bradfish L.J., Dollase W.A. 1981. Composition of plutonic muscovite: genetic implications. Can. Mineral., 19: 25-34.Google Scholar

  • [12] Oberc-Dziedzic T., Pin C., Duthou J.L., Couturie, J.P. (1996): Age and origin of the Strzelin granitoids (Fore-Sudetic Block, Poland): 87Rb/86Sr data Neues Jahrb. Miner. Abh., 171: 187-198.Google Scholar

  • [13] Oberc-Dziedzic, T., Kryza, R., 2012. Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geological Quarterly, 56 (2): 225-236.CrossrefGoogle Scholar

  • [14] Oberc-Dziedzic, T., Kryza, R., Białek, J., 2010. Variscan multi stage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U/Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geological Quarterly, 54 (3): 301-324.Google Scholar

  • [15] Oberc-Dziedzic, T., Kryza, R., Pin, C., Madej, S., 2013. Variscan granitoid plutonism in the Strzelin Massie (SW Poland): petrology and age of the composite Strzelin intrusion. Geological Quarterly, 57 (2): 269-288.Google Scholar

  • [16] Oberc-Dziedzic, T., Kryza, R., Pin, C., 2015. Last stage of Variscan granitoid magmatism in the Strzelin Massif (SW Poland): petrology and age of biotite granite. Geological Quarterly, 59 (4): 718-737.Google Scholar

  • [17] Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C., 2003. SHRIMP U/Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. Int. J. Earth Sci., 92: 701-711.CrossrefGoogle Scholar

  • [18] Pichavant M. 1981. An experimental study of the effect of boron on a water-saturated haplogranite at 1 kbar vapour pressure. Contrib. Miner. Petrol., 76: 430-439.Google Scholar

  • [19] Pichavant M., Kontak D.J., Herrera J.V., Clark A.H. 1988. The Miocene- Pliocene Macusani Volcanics, SE Peru. 1. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib. Mineral. Petrol., 100: 300-324.CrossrefGoogle Scholar

  • [20] Pietranik A., 2013, Dating zircon from the Gęsiniec Intrusion by LAICPMS (Laser Ablation - Inductively Coupled Plasma Mass Spectrometry). Geoscience Notes 1, 63-67.Google Scholar

  • [21] Pietranik A., Koepke J., 2009. Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contr. Miner. Petr., 158: 17-36.Web of ScienceGoogle Scholar

  • [22] Pietranik A., Waight T., 2008. Processes and sources during Late Variscan dioritic-tonalitic magmatism: insights from plagioclase chemistry (Gęsiniec Intrusion, NE Bohemian Massif, Poland). J. Petrol., 49: 1619-1645.CrossrefGoogle Scholar

  • [23] Puziewicz J., Koepke, J. 1991. Controls on TiO2 content in muscovite and biotite from a two-mica granite, the Strzegom Sobotka Massif, Sudetes, SW Poland. Neues Jahrb. Miner., Monatsh., 1991: 253-261.Google Scholar

  • [24] Richardson S.W., Gilbert M.C., Bell P.M. 1969. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Amer. Jour. Sci. 267: 259-272.Google Scholar

  • [25] Speer J.A. 1984. Micas in igneous rocks. Rev. Mineral.,13: 299-356.Google Scholar

  • [26] Tuttle O.F., Bowen, N.L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geolog. Soc. Am. Mem., 74: 1-153.Google Scholar

  • [27] Zen, E-An 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Ann. Rev. Earth Planet. Sci., 1988: 21-51. Google Scholar

About the article

Received: 2016-10-25

Accepted: 2016-12-06

Published Online: 2017-02-09

Published in Print: 2016-12-01


Citation Information: Geoscience Records, Volume 3, Issue 1, Pages 7–17, ISSN (Online) 2299-6923, DOI: https://doi.org/10.1515/georec-2016-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in