Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 7, Issue 3

Issues

Upper and Lower Solutions of Boundary Value Problems for Functional Differential Equations and Theorems on Functional Differential Inequalities

R. Hakl
  • Masaryk University, Faculty of Science, Department of Mathematical Analysis, Janáčkovo nám. 2a, 662 95 Brno, Czech Republic. E-mail: ,
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Kiguradze
  • A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze St., Tbilisi 380093, Georgia. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Půža
  • Masaryk University, Faculty of Science, Department of Mathematical Analysis, Janáčkovo nám. 2a, 662 95 Brno, Czech Republic. E-mail: ,
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-23 | DOI: https://doi.org/10.1515/GMJ.2000.489

Abstract

Sufficient conditions are found for the existence of an upper and a lower solutions of the boundary value problem

where and are linear bounded operators, and and are continuous, generally speaking nonlinear, operators. Kamke type theorems are proved on functional differential inequalities.

Key words and phrases:: Boundary value problem for functional differential equation; upper and lower solutions; Kamke type theorem on functional differential inequalities

About the article

Received: 1999-07-14

Published Online: 2010-02-23

Published in Print: 2000-09-01


Citation Information: Georgian Mathematical Journal, Volume 7, Issue 3, Pages 489–512, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/GMJ.2000.489.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Irena Rachůnková, Svatoslav Staněk, Milan Tvrdý, Aleksandre Lomtatidze, Ravi P Agarwal, Irina Astashova, Alexander Domoshnitsky, Zuzana Došlá, Vyacheslav M Evtukhov, Nicolai A Izobov, Takasi Kusano, Nino Partsvania, Mykola Perestyuk, Bedřich Půža, Miklós Rontó, and Nicolai Rozov
Boundary Value Problems, 2014, Volume 2014, Number 1
[2]
Zdeněk Opluštil
Advances in Difference Equations, 2013, Volume 2013, Number 1
[3]
A. Lomtatidze, Z. Opluštil, and J. Šremr
Nonlinear Oscillations, 2009, Volume 12, Number 4, Page 474

Comments (0)

Please log in or register to comment.
Log in