Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 18, Issue 3

Issues

Higher rank Haar wavelet bases in spaces

Tengiz Kopaliani
Published Online: 2011-08-02 | DOI: https://doi.org/10.1515/gmj.2011.0029

Abstract

Using the Bellman function method, we prove that a Haar wavelet system of rank N (N ∈ ℕ, N ≥ 2) is an unconditional basis in , 1 < p < ∞, if and only if .

Keywords.: Wavelet; Littlewood–Paley theory; Bellman function method

About the article

Received: 2010-04-07

Published Online: 2011-08-02

Published in Print: 2011-09-01


Citation Information: Georgian Mathematical Journal, Volume 18, Issue 3, Pages 517–532, ISSN (Online) 1072-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj.2011.0029.

Export Citation

Comments (0)

Please log in or register to comment.
Log in