Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board Member: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

4 Issues per year


IMPACT FACTOR 2016: 0.290
5-year IMPACT FACTOR: 0.430

CiteScore 2016: 0.46

SCImago Journal Rank (SJR) 2016: 0.401
Source Normalized Impact per Paper (SNIP) 2016: 0.927

Mathematical Citation Quotient (MCQ) 2016: 0.20

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 20, Issue 2 (May 2013)

Issues

On precompact sets in spaces Cc(X)

Juan Carlos Ferrando / Jerzy Ka̧kol
Published Online: 2013-05-15 | DOI: https://doi.org/10.1515/gmj-2013-0022

Abstract.

We show that the fact that X has a compact resolution swallowing the compact sets characterizes those Cc(X) spaces which have the so-called 𝔊-base. So, if X has a compact resolution which swallows all compact sets, then Cc(X) belongs to the class 𝔊 of Cascales and Orihuela (a large class of locally convex spaces which includes the (LM) and (DF)-spaces) for which all precompact sets are metrizable and, conversely, if Cc(X) belongs to the class 𝔊 and X satisfies an additional mild condition, then X has a compact resolution which swallows all compact sets. This fully applicable result extends the classification of locally convex properties (due to Nachbin, Shirota, Warner and others) of the space Cc(X) in terms of topological properties of X and leads to a nice theorem of Cascales and Orihuela stating that for X containing a dense subspace with a compact resolution, every compact set in Cc(X) is metrizable.

Keywords: Compact resolution; space Cc(X); 𝔊-base; class 𝔊; K-analytic space; W-space; quasibarrelled space

About the article

Received: 2012-06-22

Revised: 2013-02-12

Accepted: 2013-04-12

Published Online: 2013-05-15

Published in Print: 2013-05-01


Citation Information: Georgian Mathematical Journal, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2013-0022.

Export Citation

© 2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
J.C. Ferrando, S. Gabriyelyan, and J. Ka̧kol
Topology and its Applications, 2017
[2]
Saak Gabriyelyan and Jerzy Ka̧kol
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, Volume 111, Number 2, Page 575
[3]
J.C. Ferrando, J. Ka̧kol, and M. López-Pellicer
Topology and its Applications, 2016, Volume 208, Page 30
[4]
T. Banakh and S. Gabriyelyan
Monatshefte für Mathematik, 2016, Volume 180, Number 1, Page 39
[5]
Juan Carlos Ferrando
Topology and its Applications, 2015, Volume 193, Page 77
[6]
S.S. Gabriyelyan, J. Ka̧kol, A. Kubzdela, and M. Lopez-Pellicer
Topology and its Applications, 2015, Volume 192, Page 123
[7]
S. Gabriyelyan and J. Ka̧kol
Topology and its Applications, 2015, Volume 190, Page 59
[8]
Juan Carlos Ferrando
Journal of Function Spaces, 2014, Volume 2014, Page 1
[9]
Juan Carlos Ferrando
Topology and its Applications, 2014, Volume 172, Page 41

Comments (0)

Please log in or register to comment.
Log in