Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio

IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

See all formats and pricing
More options …
Volume 21, Issue 2


Expansions and asymptotics associated with basic hypergeometric functions and modified q-Bessel functions

Ahmed Salem
  • Department of Basic Science, Faculty of Information Systems & Computer Science, October 6 University, Sixth of October City, Giza, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-26 | DOI: https://doi.org/10.1515/gmj-2014-0020


In this paper, the expansion of a basic confluent hypergeometric function in terms of an incomplete q-gamma function is investigated and shown to be an asymptotic expansion for a basic confluent hypergeometric function and a q-analogue of the Hadamard expansion. The general expansion associated with a basic hypergeometric function is introduced. In special cases, this provides alternative derivations of the q-Hadamard expansion. Expansions and asymptotics for modified q-Bessel functions are derived as special cases from the general expansion.

Keywords: Basic hypergeometric functions; incomplete q-gamma function; modified q-Bessel functions; expansions and asymptotics

MSC: 41A58; 33D05; 33D15

About the article

Received: 2011-06-30

Revised: 2014-03-01

Accepted: 2014-03-10

Published Online: 2014-04-26

Published in Print: 2014-06-01

Citation Information: Georgian Mathematical Journal, Volume 21, Issue 2, Pages 233–241, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2014-0020.

Export Citation

© 2014 by Walter de Gruyter Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in