Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 23, Issue 3

Issues

Estimates for the asymptotic convergence of a non-isothermal linear elasticity with friction

Abdelkader Saadallah / Hamid Benseridi / Mourad Dilmi / Salah Drabla
Published Online: 2016-03-23 | DOI: https://doi.org/10.1515/gmj-2016-0002

Abstract

In this paper, we are interested in the study of the asymptotic analysis of a dynamical problem in elasticity with nonlinear friction of Tresca type. The Lamé coefficients of a thin layer are assumed to vary with respect to the thin layer parameter ε and to depend on the temperature. We prove the existence and uniqueness of a weak solution for the limit problem. The proof is carried out by the use of the asymptotic behavior when the dimension of the domain tends to zero.

Keywords: A priori inequalities; free boundary problems; elasticity system; asymptotic approach; Tresca law

MSC 2010: 35R35; 76F10; 78M35; 35B40; 35J85; 49J40

References

  • [1]

    Atkinson K. and Han W., Theoretical Numerical Analysis. A Functional Analysis Framework, Texts Appl. Math. 39, Springer, New York, 2001. Google Scholar

  • [2]

    Bayada G. and Boukrouche M., On a free boundary problem for the Reynolds equation derived from the Stokes systems with Tresca boundary conditions, J. Math. Anal. Appl. 282 (2003), no. 1, 212–231. Google Scholar

  • [3]

    Bayada G. and Lhalouani K., Asymptotic and numerical analysis for unilateral contact problem with Coulomb’s friction between an elastic body and a thin elastic soft layer, Asymptot. Anal. 25 (2001), no. 3–4, 329–362. Google Scholar

  • [4]

    Benseridi H. and Dilmi M., Some inequalities and asymptotic behavior of a dynamic problem of linear elasticity, Georgian Math. J. 20 (2013), no. 1, 25–41. Google Scholar

  • [5]

    Boukrouche M. and El Mir R., Asymptotic analysis of a non-Newtonian fluid in a thin domain with Tresca law, Nonlinear Anal. 59 (2004), no. 1–2, 85–105. Google Scholar

  • [6]

    Boukrouche M. and El Mir R., On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions, Nonlinear Anal. Real World Appl. 9 (2008), no. 2, 674–692. Google Scholar

  • [7]

    Boukrouche M. and ukaszewicz G. Ł., On a lubrication problem with Fourier and Tresca boundary conditions, Math. Models Methods Appl. Sci. 14 (2004), no. 6, 913–941. Google Scholar

  • [8]

    Boukrouche M. and Saidi F., Non-isothermal lubrication problem with Tresca fluid-solid interface law II. Asymptotic behavior of weak solutions, Nonlinear Anal. Real World Appl. 9 (2008), no. 4, 1680–1701. Google Scholar

  • [9]

    Duvaut G. and Lions J. L., Les Inéquations en Mécanique et en Physique, Travaux et Recherches Mathématiques 21, Dunod, Paris, 1972. Google Scholar

  • [10]

    Gallouët T. and Herbin R., Existence of a solution to a coupled elliptic system, Appl. Math. Lett. 7 (1994), no. 2, 49–55. Google Scholar

  • [11]

    Girault V. and Raviart P. A., Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Math. 749, Springer, Berlin, 1979. Google Scholar

About the article

Received: 2013-02-05

Accepted: 2015-03-26

Published Online: 2016-03-23

Published in Print: 2016-09-01


Citation Information: Georgian Mathematical Journal, Volume 23, Issue 3, Pages 435–446, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2016-0002.

Export Citation

© 2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Y. Letoufa, H. Benseridi, and M. Dilmi
Asian-European Journal of Mathematics, 2019, Page 2150007
[2]
Mohamed Dilmi, Mourad Dilmi, and Hamid Benseridi
Mathematical Methods in the Applied Sciences, 2019
[3]
Mohamed Dilmi, Mourad Dilmi, and Hamid Benseridi
Mathematical Methods in the Applied Sciences, 2019
[4]
Mohamed Dilmi, Mourad Dilmi, and Hamid Benseridi
Computational and Mathematical Methods, 2019, Volume 1, Number 3, Page e1028
[5]
H. Benseridi, Y. Letoufa, and M. Dilmi
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019
[6]
Mohamed Dilmi, Mourad Dilmi, and Hamid Benseridi
Mathematical Methods in the Applied Sciences, 2018
[7]
H. Benseridi, M. Dilmi, and A. Saadallah
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017

Comments (0)

Please log in or register to comment.
Log in