Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 23, Issue 3

Issues

A spectral representation of the linear multivelocity transport problem

Mariam Avalishvili / Dazmir Shulaia
  • I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University, 2 University Str., Tbilisi 0186; and Georgian Technical University, 77 Kostava Str.,Tbilisi 0175, Georgia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-18 | DOI: https://doi.org/10.1515/gmj-2016-0033

Abstract

The transformation of the original characteristic equation of the multivelocity linear transport theory was carried out by expanding the scattering function for the problem to be solved as a spectral integral over a complete set of eigenfunctions for the previously solved transport problem. The obtained equation represents a singular integral equation containing a spectral integral over the spectrum of the solved problem, whose kernel depends on the difference between the scattering of the problem to be solved and that of the already solved problem. We consider also the examples illustrating the validity of such a transformation. M. Kanal and J. Davies made a similar transformation of the characteristic equation of the one-velocity transport theory.

Keywords: Spectral integral; eigenfunctions; eigenvalues; inverse problem

MSC 2010: 45A05; 82D75; 45E99; 11F72

References

  • [1]

    Case K. M., Elementary solutions of the transport equation and their applications, Ann. Physics 9 (1960), 1–23. Google Scholar

  • [2]

    Ershov Y. I. and Shikhov S., Methods for the Solution of Boundary Value Problems of Transport Theory (in Russian), Atomizdat, Moscow, 1977. Google Scholar

  • [3]

    Kanal M. and Davies J. A., A spectral representation of the linear transport problem. I, Transp. Theory Stat. Phys. 10 (1981), no. 1–2, 29–51. Google Scholar

  • [4]

    Muskhelishvili N. I., Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, P. Noordhoff, Groningen, 1953. Google Scholar

  • [5]

    Shulaia D. A., On the expansion of solutions of the linear multivelocity transport theory equation in eigenfunctions of the characteristic equation (in Russian), Dokl. Akad. Nauk SSSR 310 (1990), no. 4, 844–849; translation in Soviet Phys. Dokl. 35 (1990), no. 2, 138–140. Google Scholar

  • [6]

    Shulaia D., Linear integral equations of the third kind arising from neutron transport theory, Math. Methods Appl. Sci. 30 (2007), no. 15, 1941–1964. Google Scholar

  • [7]

    Shulaia D., Some applications of a spectral representation of the linear multigroup transport problem, Transp. Theory Stat. Phys. 38 (2009), no. 7, 347–382. Google Scholar

  • [8]

    Shulaia D. A. and Gugushvili E. I., Inverse problem of spectral analysis of linear multigroup neutron transport theory in plane geometry, Transp. Theory Stat. Phys. 29 (2000), no. 6, 711–721. Google Scholar

  • [9]

    Shulaia D. and Sharashidze N., A spectral representation of the linear multigroup transport problem, Transp. Theory Stat. Phys. 33 (2004), no. 2, 183–202. Google Scholar

  • [10]

    Tamarkin J. D., On Fredholm’s integral equations, whose kernels are analytic in a parameter, Ann. of Math. (2) 28 (1926/27), no. 1–4, 127–152. Google Scholar

About the article

Received: 2014-12-29

Accepted: 2015-04-14

Published Online: 2016-08-18

Published in Print: 2016-09-01


Citation Information: Georgian Mathematical Journal, Volume 23, Issue 3, Pages 329–341, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2016-0033.

Export Citation

© 2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in