Abstract
It is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.
Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.
Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio
IMPACT FACTOR 2018: 0.551
CiteScore 2018: 0.52
SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711
Mathematical Citation Quotient (MCQ) 2018: 0.27
30,00 € / $42.00 / £23.00
Get Access to Full TextIt is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.
Keywords: Vitali set; Bernstein set; Hamel basis; selector; partial selector
Bernstein F., Zur Theorie der trigonometrischen Reihe, Leipz. Ber. 60 (1908), 325–338. Google Scholar
Cichon J., Kharazishvili A. and Weglorz B., Subsets of the Real Line, Wydawnictwo Uniwersytetu Lodzkiego, Lodz, 1995. Google Scholar
Hamel G., Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: , Math. Ann. 60 (1905), 459–462. Google Scholar
Kechris A. S., Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995. Google Scholar
Kharazishvili A. B., Nonmeasurable Sets and Functions, North-Holland Math. Stud. 195, Elsevier Science, Amsterdam, 2004. Google Scholar
Kharazishvili A. B., Topics in Measure Theory and Real Analysis, Atlantis Stud. Math. 2, Atlantis Press, Paris, 2009. Google Scholar
Kharazishvili A. B., Measurability properties of Vitali sets, Amer. Math. Monthly 118 (2011), no. 8, 693–703. Google Scholar
Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, Pr. Nauk. Uniw. Śla̧skiego Katowicach 489, Uniwersytet Śla̧ski, Warsaw, 1985. Google Scholar
Kuratowski K., Topology, Vol. I, Academic Press, New York, 1966. Google Scholar
Miller A. W., Special subsets of the real line, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984), 201–233. Google Scholar
Morgan, II J. C., Point Set Theory, Pure Appl. Math, 131, Marcel Dekker, New York, 1990. Google Scholar
Oxtoby J. C., Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, Grad. Texts in Math. 2, Springer, New York, 1971. Google Scholar
Raisonnier J., A mathematical proof of S. Shelah’s theorem on the measure problem and related results, Israel J. Math. 48 (1984), no. 1, 48–56. Google Scholar
Shelah S., Can you take Solovay’s inaccessible away?, Israel J. Math. 48 (1984), no. 1, 1–47. Google Scholar
Sierpiński W., Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105–111. Google Scholar
Solovay R. M., A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. Google Scholar
Vitali G., Sul Problema Della Misura dei Gruppi di Punti di una Retta. Nota, Gamberini e Parmeggiani, Bologna, 1905. Google Scholar
Received: 2015-01-08
Accepted: 2015-06-03
Published Online: 2016-08-30
Published in Print: 2016-09-01
Citation Information: Georgian Mathematical Journal, Volume 23, Issue 3, Pages 387–391, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2016-0036.
© 2016 by De Gruyter.
Comments (0)