Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Georgian Mathematical Journal

Editor-in-Chief: Kiguradze, Ivan / Buchukuri, T.

Editorial Board: Kvinikadze, M. / Bantsuri, R. / Baues, Hans-Joachim / Besov, O.V. / Bojarski, B. / Duduchava, R. / Engelbert, Hans-Jürgen / Gamkrelidze, R. / Gubeladze, J. / Hirzebruch, F. / Inassaridze, Hvedri / Jibladze, M. / Kadeishvili, T. / Kegel, Otto H. / Kharazishvili, Alexander / Kharibegashvili, S. / Khmaladze, E. / Kiguradze, Tariel / Kokilashvili, V. / Krushkal, S. I. / Kurzweil, J. / Kwapien, S. / Lerche, Hans Rudolf / Mawhin, Jean / Ricci, P.E. / Tarieladze, V. / Triebel, Hans / Vakhania, N. / Zanolin, Fabio


IMPACT FACTOR 2018: 0.551

CiteScore 2018: 0.52

SCImago Journal Rank (SJR) 2018: 0.320
Source Normalized Impact per Paper (SNIP) 2018: 0.711

Mathematical Citation Quotient (MCQ) 2018: 0.27

Online
ISSN
1572-9176
See all formats and pricing
More options …
Volume 25, Issue 4

Issues

Cyclic homology of cyclic ∞-simplicial modules

Sergey V. Lapin
Published Online: 2018-09-11 | DOI: https://doi.org/10.1515/gmj-2018-0053

Abstract

The notion of a cyclic -simplicial module is introduced. The homotopy invariance of the structure of a cyclic -simplicial module is proved. The conception of the cyclic homology of cyclic -simplicial modules is developed. For the cyclic homology of cyclic -simplicial modules, the analogue of the Connes–Tsygan exact sequence is obtained.

Keywords: Cyclic homology; Connes–Tsygan exact sequence; cyclic simplicial module; homotopy invariance structure

MSC 2010: 55U10; 18G30; 55U43

References

  • [1]

    A. Connes, Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953–958. Google Scholar

  • [2]

    A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), no. 2, 257–360. Google Scholar

  • [3]

    T. V. Kadeishvili, On the theory of homology of fiber spaces (in Russian), Uspekhi Mat. Nauk 35 (1980), no. 3(213), 183–188; translation in Russian Math. Surveys 35 (1980), no. 3, 231–238. Google Scholar

  • [4]

    S. V. Lapin, Differential perturbations and D-differential modules (in Russian), Mat. Sb. 192 (2001), no. 11, 55–76; translation in Sb. Math. 192 (2001), no. 11-12, 1639–1659. Google Scholar

  • [5]

    S. V. Lapin, Homotopy properties of differential Lie modules over curved coalgebras and Koszul duality (in Russian), Mat. Zametki 94 (2013), no. 3, 354–372; translation in Math. Notes 94 (2013), no. 3-4, 335–350. Google Scholar

  • [6]

    S. V. Lapin, Homotopy simplicial faces and the homology of realizations of simplicial topological spaces (in Russian), Mat. Zametki 94 (2013), no. 5, 661–681; translation in Math. Notes 94 (2013), no. 5-6, 619–635. Google Scholar

  • [7]

    S. V. Lapin, Differential Lie modules over curved colored coalgebras and -simplicial modules (in Russian), Mat. Zametki 96 (2014), no. 5, 709–731; translation in Math. Notes 96 (2014), no. 5-6, 698–715. Google Scholar

  • [8]

    S. V. Lapin, Chain realization of differential modules with -simplicial faces and the B-construction for A-algebras (in Russian), Mat. Zametki 98 (2015), no. 1, 101–124; translation in Math. Notes 98 (2015), no. 1-2, 111–129. Google Scholar

  • [9]

    S. V. Lapin, Homotopy properties of differential modules with simplicial F-faces and D-differential modules, Georgian Math. J. 22 (2015), no. 4, 543–562. Google Scholar

  • [10]

    S. V. Lapin, Homotopy properties of -simplicial coalgebras and homotopy unital supplemented A-algebras (in Russian), Mat. Zametki 99 (2016), no. 1, 55–77; translation in Math. Notes 99 (2016), no. 1-2, 63–81. Google Scholar

  • [11]

    S. V. Lapin, Cyclic modules with -simplicial faces and the cyclic homology of A-algebras (in Russian), Mat. Zametki 102 (2017), no. 6, 874–895; translation in Math. Notes 102 (2017), no. 5-6, 806–823. Google Scholar

  • [12]

    J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer, Berlin, 1992. Google Scholar

  • [13]

    J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), no. 4, 569–591. Google Scholar

  • [14]

    V. V. Lyubashenko, Homotopy unital A-algebras, preprint (2012), https://arxiv.org/abs/1205.6058.

  • [15]

    J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Math. Stud. 11, D. Van Nostrand, Toronto, 1967. Google Scholar

  • [16]

    J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292. Google Scholar

  • [17]

    J. D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293–312. Google Scholar

  • [18]

    B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology (in Russian), Uspekhi Mat. Nauk 38 (1983), no. 2(230), 217–218; translation in Russian Math. Surveys 38 (1983), no. 22, 198–199. Google Scholar

About the article

Received: 2017-11-28

Accepted: 2018-04-04

Published Online: 2018-09-11

Published in Print: 2018-12-01


Citation Information: Georgian Mathematical Journal, Volume 25, Issue 4, Pages 571–591, ISSN (Online) 1572-9176, ISSN (Print) 1072-947X, DOI: https://doi.org/10.1515/gmj-2018-0053.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in